

Previously

- Filters allow local image neighborhood to influence our description and features
 - Smoothing to reduce noise
 - Derivatives to locate contrast, gradient
- · Seam carving application:
 - use image gradients to measure "interestingness" or "energy"
 - remove 8-connected seams so as to preserve image's energy

Today

- Edge detection and matching
 - process the image gradient to find curves/contours
 - comparing contours
- Binary image analysis
 blobs and regions

Edge detection

- Goal: map image from 2d array of pixels to a set of curves or line segments or contours.
- · Why?

Figure from D. Lowe

• Main idea: look for strong gradients, post-process

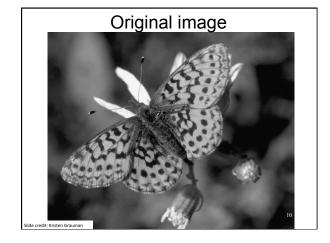
Gradients -> edges

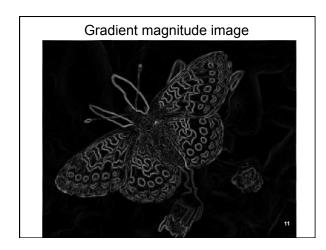
Primary edge detection steps:

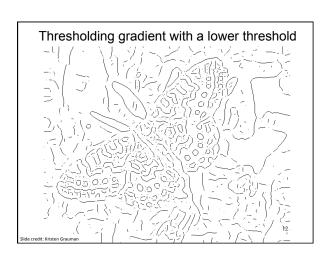
- 1. Smoothing: suppress noise
- 2. Edge enhancement: filter for contrast
- 3. Edge localization

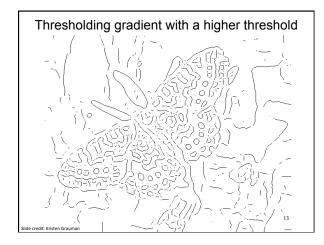
Determine which local maxima from filter output are actually edges vs. noise

• Threshold, Thin


lide credit: Kristen Graumar


8


Thresholding

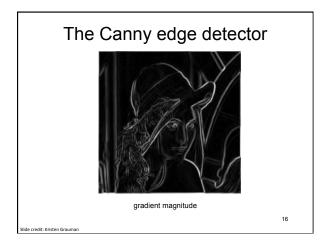

- · Choose a threshold value t
- · Set any pixels less than t to zero (off)
- Set any pixels greater than or equal to t to one (on)

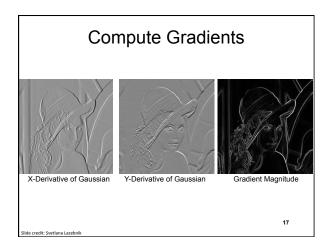
lide credit: Kristen Grauma

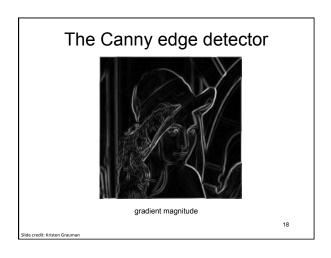
Canny edge detector

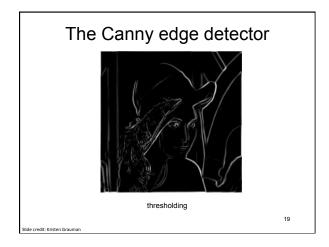
- Filter image with derivative of Gaussian
- Find magnitude and orientation of gradient
- Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them
- MATLAB: edge(image, 'canny');
- >>help edge

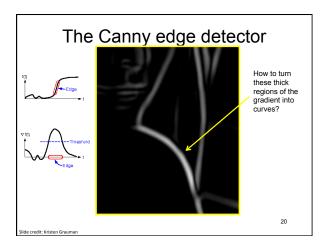
14

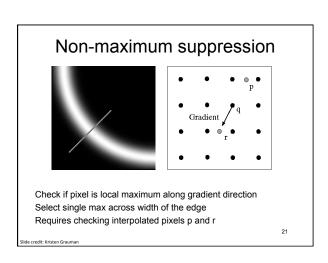

15

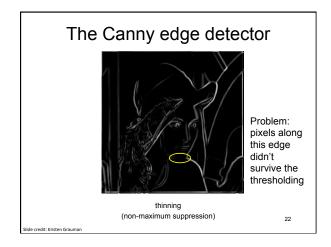

The Canny edge detector

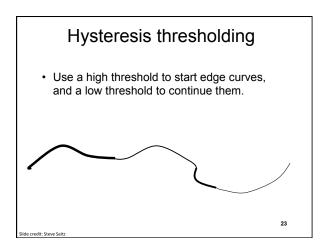


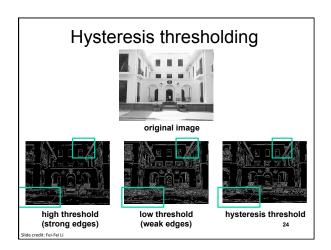

original image (Lena)


Slide credit: Steve Seitz









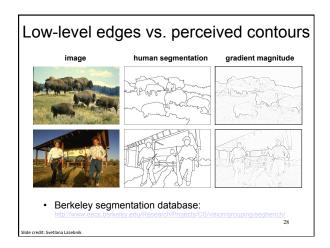
Hysteresis thresholding

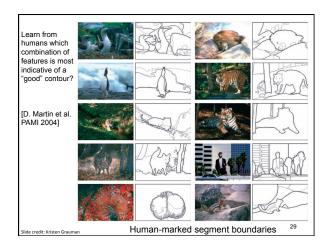
25

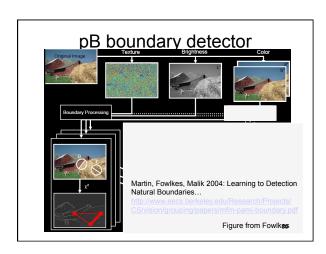
Recap: Canny edge detector

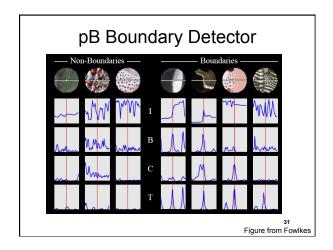
- Filter image with derivative of Gaussian
- Find magnitude and orientation of gradient
- Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them
- MATLAB: edge(image, 'canny');
- >>help edge

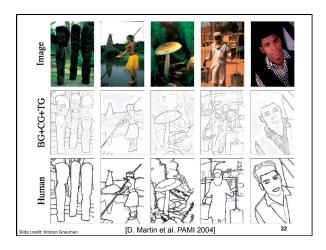
Low-level edges vs. perceived contours

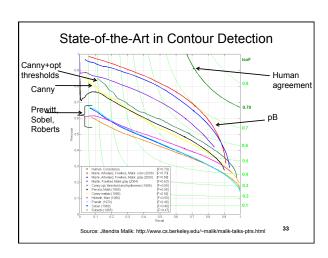


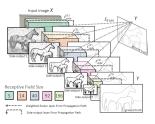












Holistically-Nested Edge Detection (Xie, Tu ICCV 2015)

- holistic image training and prediction
- 2. multi-scale and multi-level feature learning
- 3. Deeply-supervised fully-convolutional network

34

State-of-the-Art in Contour Detection ### (F=00) Harman ### (F=00) H

Today

- · Edge detection and matching
 - process the image gradient to find curves/contours
 - comparing contours
- · Binary image analysis
 - blobs and regions

Slide credit: Kristen Grauman

Fig. 1. Examples of two handwritten digits. In terms of pixel-to-pixel comparisons, these two images are quite different, but to the human observer, the shapes appear to be similar.

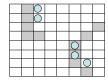
Figure from Belongie et al.

37

Chamfer distance

Average distance to nearest feature/edge

$$D_{chamfer}(T,I) \equiv \frac{1}{|T|} \sum_{t \in T} d_I(t)$$


 $I={
m Set}$ of edge points in image

 $T={
m Set}$ of edge points on (shifted) template

 $d_I(t) = \underset{\text{and some point in } I}{\text{Minimum distance between point t}}$

3

Chamfer distance

$$D_{chamfer}(T,I) \equiv \frac{1}{|T|} \sum_{t \in T} d_I(t)$$

Slide credit: Kristen Grauman

Chamfer distance

· Average distance to nearest feature

$$D_{chamfer}(T,I) \equiv \frac{1}{|T|} \sum_{t \in T} d_I(t)$$

How is the measure different than just filtering with a mask having the shape points?

How expensive is a naïve implementation?

Distance transform

Image features (2D)

Distance Transform										
1	0	1	2	3	4	3	2			
1	0	1	2	3	3	2	1			
1	0	1	2	3	2	1	0			
1	0	0	1	2	1	0	1			
2	1	1	2	1	0	1	2			
3	2	2	2	1	0	1	2			
4	3	3	2	1	0	1	2			
5	4	4	3	2	1	0	1			

Distance Transform is a function $D(\cdot)$ that for each image pixel p assigns a non-negative number D(p) corresponding to distance from p to the nearest feature in the image I

Distance transform

Value at (x,y) tells how far that position is from the nearest edge point (or other binary image structure)

>> help bwdist

Distance transform (1D)

Two pass O(n) algorithm for $1D L_1$ norm

 $\begin{array}{c} 1. \ \underline{Initialize} \colon \mathsf{For} \ \mathsf{all} \ \mathsf{j} \\ \mathsf{D[j]} \leftarrow \mathbf{1_{P}[j]} \end{array}$

// 0 if j is in **P**, infinity otherwise

Distance transform

43

Distance Transform (2D)

- 2D case analogous to 1D
 - Initialization
 - Forward and backward pass
 - Fwd pass finds closest above and to left
 - Bwd pass finds closest below and to right

...

Chamfer distance

Average distance to nearest feature

$$D_{chamfer}(T,I) \equiv \frac{1}{|T|} \sum_{t \in T} d_I(t)$$

Edge image

Distance transform image

Slide credit: Kristen Grauman

Chamfer distance					
Edge image Distance transform image 46					
Fig from D. Gavrila, DAGM 1999					

Chamfer distance: properties

- · Sensitive to scale and rotation
- Tolerant of small shape changes, clutter
- Need large number of template shapes
- · Inexpensive way to match shapes

ide credit: Kristen Grauma

4

Today

- Edge detection and matching
 - process the image gradient to find curves/contours
 - comparing contours
- Binary image analysis
 - blobs and regions

ilide credit: Kristen Graum

Binary images	
	0 1 2 3 3 4 4 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Wanter State	- Angelinda Alla Angelinda
Slide credit: Kristen Grauman	-10

Binary image analysis: basic steps

- · Convert the image into binary form
 - Thresholding
- Clean up the thresholded image
 - Morphological operators
- · Extract separate blobs
 - Connected components
- Describe the blobs with region properties

de credit: Kristen Graumai

50

Binary images

- Two pixel values
 - Foreground and background
 - Mark region(s) of interest

lide credit: Kristen Grauma

Thresholding

- Grayscale -> binary mask
- Useful if object of interest's intensity distribution is distinct from background

$$\begin{aligned} F_T[i,j] &= \left\{ \begin{array}{l} 1 & \text{if} \quad F[i,j] \geq T \\ 0 & \text{otherwise.} \end{array} \right. \\ F_T[i,j] &= \left\{ \begin{array}{l} 1 & \text{if} \quad T_1 \leq F[i,j] \leq T_2 \\ 0 & \text{otherwise.} \end{array} \right. \\ F_T[i,j] &= \left\{ \begin{array}{l} 1 & \text{if} \quad F[i,j] \in Z \\ 0 & \text{otherwise.} \end{array} \right. \end{aligned}$$

 Example http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/ FITZGIBBON/simplebinary.html

52

Thresholding

 Given a grayscale image or an intermediate matrix → threshold to create a binary output.

Example: edge detection

Gradient magnitude

fg_pix = find(gradient_mag > t);

Looking for pixels where gradient is strong.

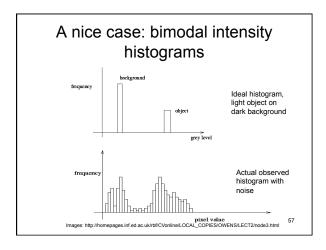
.

Slide adapted from Kristen Grauman

Thresholding

 Given a grayscale image or an intermediate matrix → threshold to create a binary output.

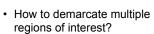
Example: background subtraction



Looking for pixels that differ significantly from the "empty" background.

Slide credit: Kristen Grauman

fg_pix = find(diff > t);


Not so nice cases Two distinct modes Overlapped modes

Issues

- What to do with "noisy" binary outputs?
 - Holes

lide credit: Shapiro and Stockman

- Extra small fragments

- Count objects
- Compute further features per object

59

ilide credit: Kristen Grauman

Morphological operators

- Change the shape of the foreground regions via intersection/union operations between a scanning structuring element and binary image
- · Useful to clean up result from thresholding
- · Basic operators are:
 - Dilation
 - Erosion

Slide credit: Kristen Grauman

Dilation

- · Expands connected components
- · Grow features
- · Fill holes

Slide credit: Kristen Grauman

After dilation

Before dilation

Erosion

- · Erode connected components
- · Shrink features
- Remove bridges, branches, noise

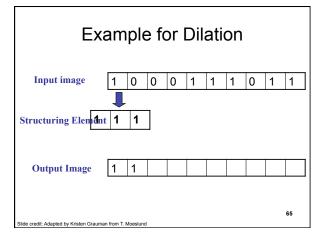
Before erosion

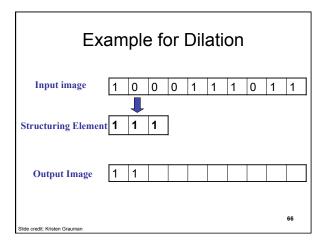
After erosion

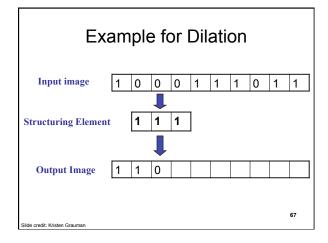
Structuring elements

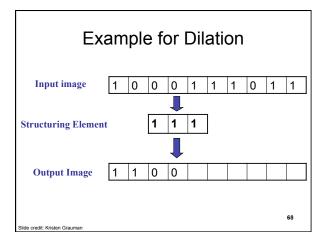
• Masks of varying shapes and sizes used to perform morphology, for example:

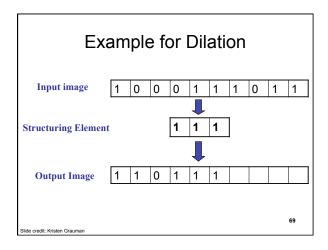
· Scan mask across foreground pixels to transform the binary image

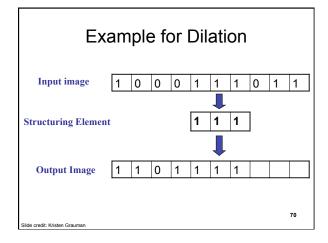

>> help strel

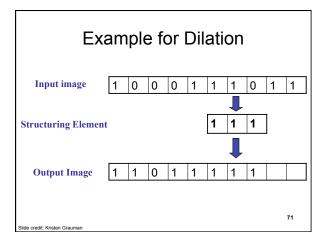

Slide credit: Kristen Grauman

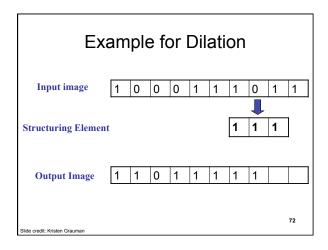

Dilation vs. Erosion

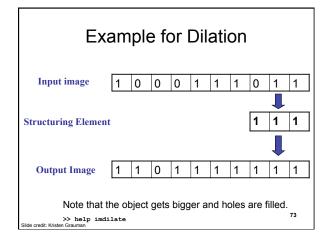

At each position:

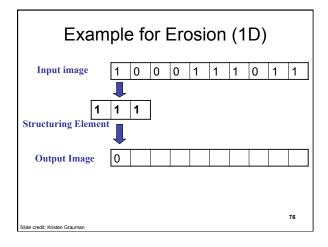

• **Dilation**: if **current pixel** is 1, then set all the output pixels corresponding to structuring element to 1.

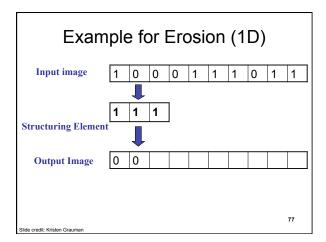


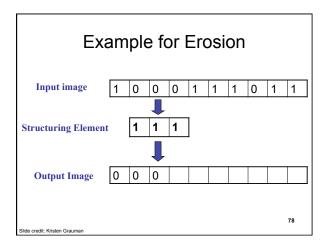


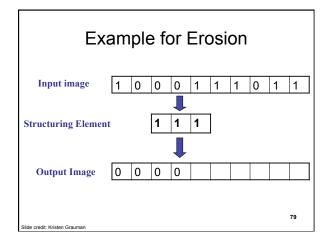


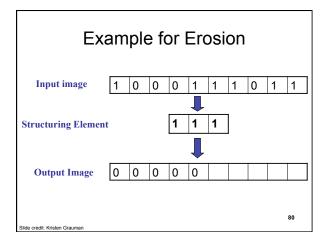


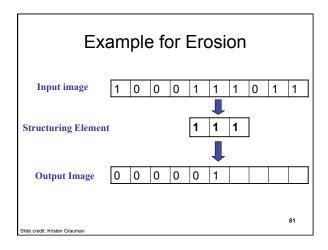


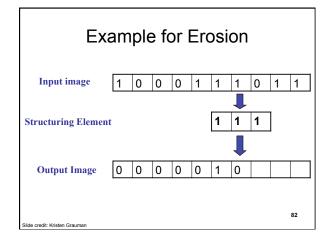


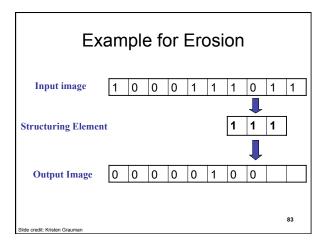

Dilation vs. Erosion

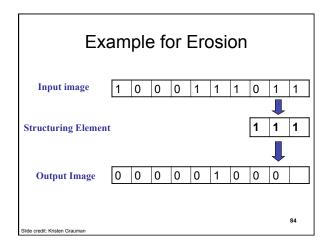

At each position:

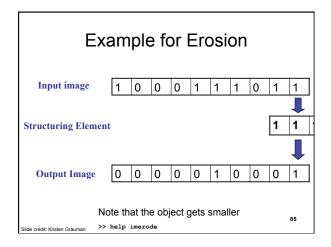

- **Dilation**: if **current pixel** is 1, then set all the output pixels corresponding to structuring element to 1.
- Erosion: if every pixel under the structuring element is 1, then set the output pixel corresponding to the current pixel to 1.

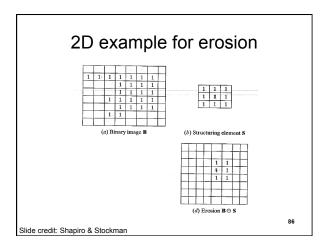


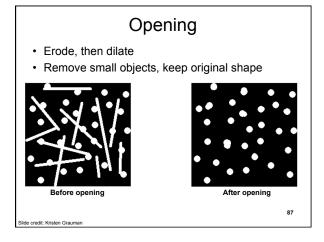


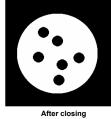












Closing

- · Dilate, then erode
- Fill holes, but keep original shape

Applet: http://bigwww.epfl.ch/demo/jmorpho/start.php

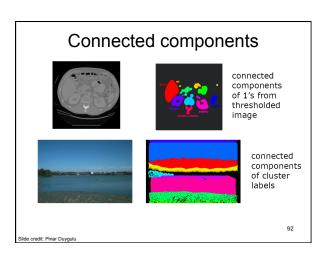
Issues

- · What to do with "noisy" binary outputs?
 - Holes
 - Extra small fragments

- · How to demarcate multiple regions of interest?
 - Count objects
 - Compute further features per object

Connected components

· Identify distinct regions of "connected pixels"



>> L = bwlabel(BW,conn)

91

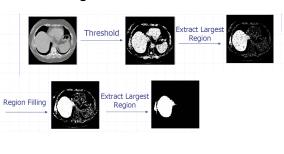
Slide credit: Chaitanya Chandra

Region properties • Given connected components, can compute simple features per blob, such as: - Area (num pixels in the region) - Centroid (average x and y position of pixels in the region) - Bounding box (min and max coordinates)

Binary image analysis: basic steps (recap)

- · Convert the image into binary form
 - Thresholding
- · Clean up the thresholded image
 - Morphological operators
- · Extract separate blobs
 - Connected components
- Describe the blobs with region properties

Slide credit: Kristen Grauman


94

Matlab

Slide adapted from Kristen Grauman

95

Example using binary image analysis: segmentation of a liver

Slide credit: Li Shen Application by Jie Zhu, Cornell University

Binary images

- Pros
 - Can be fast to compute, easy to store
 - Simple processing techniques available
 - Lead to some useful compact shape descriptors
- Cons
 - Hard to get "clean" silhouettes
 - Noise common in realistic scenarios
 - Can be too coarse of a representation

97

Summary

Operations, tools

Derivative filters

Smoothing, morphology

Thresholding

Connected components

Matching filters

Histograms

1111111

 Features, representations Edges, gradients Blobs/regions Local patterns Textures (next)

Color distributions

98

Coming up

- Texture
 - Read Szeliski 10.5

Questions?	
See you Thursday!	
100	