

Last time: Grouping

- Bottom-up segmentation via clustering
- To find mid-level regions, tokens
- General choices -- features, affinity functions, and clustering algorithms
- Example clustering algorithms
- Mean shift and mode finding: K-means, Mean shift
- Graph theoretic: Graph cut, normalized cuts
- Grouping also useful for quantization
- Texton histograms for texture within local region

Slide credit: Kristen Grauman \qquad

Recall: Images as graphs

Fully-connected graph

- node for every pixel
- link between every pair of pixels, $\mathbf{p , q}$
- similarity w_{pq} for each link " similarity is inversely proportional to difference in color and position
by Steve Seitz
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Visualizing a shuffled affinity matrix
\qquad

If we permute the order of the vertices as they are referred to in the affinity matrix, we see different patterns:
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Goal: Segmentation by Graph Cuts

Break graph into segments

- Delete links that cross between segments
- Easiest to break links that have low similarity
- similar pixels should be in the same segments
- dissimilar pixels should be in different segments

Slide credit: Kristen Grauman

Now: Fitting

- Want to associate a model with multiple observed features

For example, the model could be a line, a circle, or an arbitrary shape.

Fitting: Main idea

- Choose a parametric model that best represents a set of features
- Membership criterion is not local
- Can't tell whether a point belongs to a given model just by looking at that point
- Three main questions:
- What model represents this set of features best?
- Which of several model instances gets which feature?
- How many model instances are there?
- Computational complexity is important
- It is infeasible to examine every possible set of parameters and every possible combination of features

Example: Line fitting

- Why fit lines?

Many objects characterized by presence of straight lines

- Wait, why aren't we done just by running edge detection?

Voting

- It's not feasible to check all combinations of features by fitting a model to each possible subset.
- Voting is a general technique where we let each feature vote for all models that are compatible with it.
- Cycle through features, cast votes for model parameters.
- Look for model parameters that receive a lot of votes.
- Noise \& clutter features will cast votes too, but typically their votes should be inconsistent with the majority of "good" features.
\qquad

Fitting lines: Hough transform

- Given points that belong to a line, what is the line?
- How many lines are there?
- Which points belong to which lines?
- Hough Transform is a voting technique that can be used to answer all of these questions.
Main idea:

1. Record vote for each possible line on which each edge point lies.
2. Look for lines that get many votes.

Kristen Grauman
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Finding lines in an image: Hough space

\qquad
\qquad
\qquad
\qquad
\qquad between image (x, y) and Hough (m,b) spaces
\qquad

- To go from image space to Hough space:
- given a set of points (x, y), find all (m, b) such that $y=m x+b$

Finding lines in an image: Hough space \qquad

\qquad
\qquad
\qquad
Connection between image (x, y) and Hough (m, b) spaces \qquad

- A line in the image corresponds to a point in Hough space
\qquad - given a set of points (x, y), find all (m, b) such that $y=m x+b$
- What does a point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ in the image space map to?

> - Answer: the solutions of $b=-x_{0} m+y_{0}$ - this is a line in Hough space Slide credit: Steve Seitz
\qquad

Finding lines in an image: Hough space \qquad

Hough (parameter) space
What are the line parameters for the line that contains both $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ and $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$?

- It is the intersection of the lines $b=-x_{0} m+y_{0}$ and $b=-x_{1} m+y_{1}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Finding lines in an image: Hough algorithm \qquad

image space
Hough (parameter) space

How can we use this to find the most likely parameters (m, b) for the most prominent line in the image space?

- Let each edge point in image space vote for a set of possible parameters in Hough space
- Accumulate votes in discrete set of bins; parameters with the most votes indicate line in image space.
Slide credit: Kristen Grauman

Polar representation for lines

Issues with usual (m, b) parameter space: can take on infinite values, undefined for vertical lines.
$\begin{aligned} & d: \text { perpendicular distance } \\ & \text { from line to origin } \\ & \theta: \text { angle the perpendicular } \\ & \text { makes with the x-axis }\end{aligned}$
$x \cos \theta+y \sin \theta=d$

Point in image space \rightarrow sinusoid segment in Hough space

- Hough line demo \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Hough transform algorithm

\qquad
Using the polar parameterization: $x \cos \theta+y \sin \theta=d$

\qquad

Basic Hough transform algorithm

1. Initialize $\mathrm{H}[\mathrm{d}, \theta]=0$
2. for each edge point $\mathrm{I}[\mathrm{x}, \mathrm{y}]$ in the image for $\theta=\left[\theta_{\text {min }}\right.$ to $\left.\theta_{\text {max }}\right] / /$ some quantization $d=x \cos \theta+y \sin \theta$ $H[d, \theta]+=1$
3. Find the value(s) of (d, θ) where $\mathrm{H}[\mathrm{d}, \theta]$ is maximum
4. The detected line in the image is given by $d=x \cos \theta+y \sin \theta$

Time complexity (in terms of number of votes per pt)?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Here, everything appears to be "noise", or random edge points, but we still see peaks in the vote space. ${ }_{3}$

Extensions

Recall: when we detect an edge point, we also know its gradient direction \qquad
Extension 1: Use the image gradient

1. same
$\xrightarrow[G]{\longrightarrow} \nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$
$\theta=\tan ^{-1}\left(\frac{\partial f}{\partial y}, \frac{\partial f}{\partial x}\right)$ \qquad
2. for each edge point $t[x, y]$ in the image $d=x \cos \theta+y \sin \theta$ $H[d, \theta]+=1$
3. same
4. same
(Reduces degrees of freedom)

Extensions

Extension 1: Use the image gradient

1. same
2. for each edge point $\|[x, y]$ in the image compute unique (d, θ) based on image gradient at (x, y) $H[d, \theta]+=1$
3. same
4. same
(Reduces degrees of freedom) \qquad
Extension 2

- give more votes for stronger edges (use magnitude of gradient) \qquad Extension 3
change the sampling of (d, θ) to give more/less resolution Extension 4
- The same procedure can be used with circles, squares, or any other shape.

Hough transform for circles

- Circle: center (a, b) and radius r

Equation of circle?

$$
\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2}=r^{2}
$$

- For a fixed radius r

Adapted by Devi Parikh from: Kisten Grauman \qquad

Hough transform for circles

- Circle: center (a, b) and radius r

$$
\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2}=r^{2}
$$

- For a fixed radius r

Hough transform for circles

\qquad

- Circle: center (a, b) and radius r

$$
\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2}=r^{2}
$$

- For an unknown radius r

Hough transform for circles

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Hough transform for circles

- Circle: center (a, b) and radius r

$$
\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2}=r^{2}
$$

- For an unknown radius r, known gradient direction \qquad

Hough transform for circles

For every edge pixel (x, y) :
For each possible radius value r.
For each possible gradient direction θ :
// or use estimated gradient at (x, y) \qquad
$a=x-r \cos (\theta) / /$ column
$b=y+r \sin (\theta) / /$ row
$H[a, b, r]+=1$
end
end
Time complexity per edge pixel?
Check out online demo : http://www.markschulze.net/java/hough/ Kristen Grauman

Note: a different Hough transform (with separate accumulators) was used for each circle radius (quarters vs. penny).
\qquad

An Iris Detection Method Using the Hough Transform and Its Evaluation for Facial and Eye Movement, by Hideki Kashima, Hitoshi Hongo, Kunihito Kato, Kazuhiko Yamamoto, ACCV 2002.

Voting: practical tips

- Minimize irrelevant tokens first
- Choose a good grid / discretization
$\stackrel{\text { Too fine }}{ }$
? $\xrightarrow{\text { Too coarse }}$
- Vote for neighbors, also (smoothing in accumulator array)
- Use direction of edge to reduce parameters by 1

Hough transform: pros and cons

Pros

- All points are processed independently, so can cope with occlusion, gaps
- Some robustness to noise: noise points unlikely to contribute consistently to any single bin
- Can detect multiple instances of a model in a single pass

Cons

- Complexity of search time increases exponentially with the number of model parameters
- Non-target shapes can produce spurious peaks in parameter space
- Quantization: can be tricky to pick a good grid size

Generalized Hough Transform

-What if we want to detect arbitrary shapes?
Intuition:

Model image

Now suppose those colors encode gradient directions...
\qquad

Generalized Hough Transform

- Define a model shape by its boundary points and a reference point.

Offline procedure: \qquad
At each boundary point, compute displacement vector: $\mathbf{r}=\mathbf{a}-\mathbf{p}_{\mathbf{i}}$.

Store these vectors in a table indexed by gradient orientation θ.

Generalized Hough Transform

Detection procedure:

For each edge point:

- Use its gradient orientation θ to index into stored table
- Use retrieved \mathbf{r} vectors to vote for reference point

Assuming translation is the only transformation here, i.e., orientation and scale are fixed.

Generalized Hough for object detection

\qquad

- Instead of indexing displacements by gradient orientation, index by matched local patterns. \qquad
\qquad
\qquad
\qquad
\qquad
B. Leibe, A. Leonardis, and B. Schiele,

Combined Object Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004
\qquad

\qquad

Summary

- Fitting problems require finding any supporting evidence for a model, even within clutter and missing features
- associate features with an explicit model
- Voting approaches, such as the Hough transform make it possible to find likely model parameters without searching all combinations of features
- Hough transform approach for lines, circles, ..., arbitrary shapes defined by a set of boundary points, recognition from patches

