Fitting a transformation:

Feature-based alignment
April $28^{\text {th }}, 2020$

Yong Jae Lee
UC Davis

Generalized Hough Transform

- What if we want to detect arbitrary shapes?

Intuition:

Model image

Vote space
\qquad

Generalized Hough Transform

\qquad

Detection procedure:

\qquad
For each edge point:

- Use its gradient orientation ϑ to index into stored table
- Use retrieved \mathbf{r} vectors to vote for reference point

Assuming translation is the only transformation here, i.e., orientation and scale are fixed.
\qquad
\qquad
\qquad
\qquad
\qquad

Generalized Hough for object detection
testimage B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, gin Couter Vision 2004

Summary

- Fitting problems require finding any supporting evidence for a model, even within clutter and missing features
\qquad
- associate features with an explicit model
- Voting approaches, such as the Hough transform, make it possible to find likely model parameters without searching all combinations of features
- Hough transform approach for lines, circles, ..., arbitrary shapes defined by a set of boundary points, recognition from patches

Today

- Feature-based alignment
-2D transformations \qquad
- Affine fit
- RANSAC \qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Alignment problem

\qquad

- We have previously considered how to fit a model to image evidence
- e.g., a line to edge points
- In alignment, we will fit the parameters of some transformation according to a set of matching feature
\qquad
\qquad pairs ("correspondences").
\qquad
\qquad
\qquad
\qquad

Parametric (global) warping \qquad
Examples of parametric warps:

affine

perspective
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Parametric (global) warping \qquad

$\mathbf{p}=(\mathrm{x}, \mathrm{y})$
\qquad
\qquad
Transformation T is a coordinate-changing machine:

$$
\mathrm{p}^{\prime}=T(\mathrm{p})
$$

What does it mean that T is global?

- Is the same for any point p
- can be described by just a few numbers (parameters) \qquad Let's represent T as a matrix:
$\mathrm{p}^{\prime}=\mathbf{M p}$
$\left[\begin{array}{c}x^{\prime} \\ y^{\prime}\end{array}\right]=\mathbf{M}\left[\begin{array}{l}x \\ y\end{array}\right]$ \qquad
\qquad

Scaling \qquad
Scaling a coordinate means multiplying each of its components by a scalar
Uniform scaling means this scalar is the same for all components: \qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Scaling	
Scaling operation:	$x^{\prime}=a x$
	$y^{\prime}=b y$
Or, in matrix form:	
	$\left[\begin{array}{l} x^{\prime} \\ y^{\prime} \end{array}\right]=\underbrace{\left[\begin{array}{ll} a & 0 \\ 0 & b \end{array}\right]}_{\text {scaling matrix } S}\left[\begin{array}{l} x \\ y \end{array}\right]$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What transformations can be
represented with a 2×2 matrix? represented with a 2×2 matrix?
$\begin{aligned} & \text { 2D Scaling? } \\ & x^{\prime}=s_{x} * x \\ & y^{\prime}=s_{y} * y\end{aligned} \quad\left[\begin{array}{c}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}s_{x} & 0 \\ 0 & s_{y}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
2D Rotate around (0,0)?
\qquad
\qquad
\qquad
$\begin{aligned} & x^{\prime}=\cos \Theta^{*} x-\sin \Theta^{*} y \\ & y^{\prime}=\sin \Theta^{*} x+\cos \Theta^{*} y\end{aligned} \quad\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}\cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
2D Shear?
$x^{\prime}=x+s h_{x} * y$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & s h_{x} \\
s h_{y} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]_{18}
$$

What transformations can be represented with a 2×2 matrix?			
2D Mirror about Y axis?			
$x^{\prime}=-x$ $y^{\prime}=y$	$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=$		
2D Mirror over (0,0) ?			
$x^{\prime}=-x$ $y^{\prime}=-y$	$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=$		
2D Translation?			
$x^{\prime}=x+t_{x}$	NO!		
$y=y+t_{y}$			

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2D Linear Transformations

$$
\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]
$$

Only linear 2D transformations can be represented with a 2×2
matrix.
Linear transformations are combinations of ...
\quad Scale,

- Rotation,
- Shear, and
- Mirror
\qquad
\qquad
\qquad
Only linear 2D transformations can be represented with a 2×2
\qquad
\qquad
\qquad
\qquad

Homogeneous coordinates

\qquad
Convenient coordinate system to represent many useful transformations

To convert to homogeneous coordinates:
\qquad
\qquad

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

homogeneous image coordinates
\qquad
\qquad
\qquad

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w)
$$

Homogeneous Coordinates

Q: How can we represent 2d translation as a 3×3 matrix using homogeneous coordinates?
$x^{\prime}=x+t_{x}$
$y^{\prime}=y+t_{y}$
A: Using the rightmost column:
Translation $=\left[\begin{array}{ccc}1 & 0 & \boldsymbol{t}_{\boldsymbol{x}} \\ 0 & 1 & \boldsymbol{t}_{\boldsymbol{y}} \\ 0 & 0 & 1\end{array}\right]$

Basic 2D Transformations
Basic 2D transformations as 3×3 matrices

$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{ccc}s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$
Scale

\qquad

2D Affine Transformations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Affine transformations are combinations of ...

- Linear transformations, and
- Translations

Parallel lines remain parallel

Slide credit: Kristen Grauman

Today

Feature-based alignment

-2D transformations

- Affine fit
-RANSAC

Alignment problem

- We have previously considered how to fit a model to image evidence
- e.g., a line to edge points
- In alignment, we will fit the parameters of some transformation according to a set of matching feature pairs ("correspondences").

\qquad

Image alignment

- Two broad approaches:
- Direct (pixel-based) alignment
- Search for alignment where most pixels agree
- Feature-based alignment
- Search for alignment where extracted features agree
- Can be verified using pixel-based alignment

Slide credit: Kristen Grauman

Fitting an affine transformation

- Assuming we know the correspondences, how do we get the transformation?

$$
\left[\begin{array}{l}
x_{i}^{\prime} \\
y_{i}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
m_{1} & m_{2} \\
m_{3} & m_{4}
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]+\left[\begin{array}{l}
t_{1} \\
t_{2}
\end{array}\right]
$$

Slide credit: Kristen Grauman \qquad 29

An aside: Least Squares Example

Say we have a set of data points ($\mathrm{X} 1, \mathrm{X} 1^{\prime}$), ($\mathrm{X} 2, \mathrm{X} 2^{\prime}$),

$$
\text { (} \mathrm{X} 3, X 3 \text { '), etc. (e.g. person's height vs. weight) }
$$

We want a nice compact formula (a line) to predict X 's
from Xs:

$$
\mathrm{Xa}+\mathrm{b}=\mathrm{X}^{\prime}
$$

We want to find a and b
How many ($\mathrm{X}, \mathrm{X}^{\prime}$) pairs do we need?

$$
\begin{aligned}
& X_{1} a+b=X_{1}^{\prime} \\
& X_{2} a+b=X_{2}^{\prime}
\end{aligned} \quad\left[\begin{array}{ll}
X_{1} & 1 \\
X_{2} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
X_{1}^{\prime} \\
X_{2}^{\prime}
\end{array}\right] \quad \mathrm{Ax}=\mathrm{B}
$$

What if the data is noisy?
$\left[\begin{array}{cc}X_{1} & 1 \\ X_{2} & 1 \\ X_{3} & 1 \\ \ldots & \ldots\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}X_{1}^{\prime} \\ X_{2}^{\prime} \\ X_{3}^{\prime} \\ \ldots\end{array}\right]$
$\min \|A x-B\|^{2}$

overconstrained

Source: Alyosha Efros
\qquad

Fitting an affine transformation

- Assuming we know the correspondences, how do we get the transformation?

$$
\left[\begin{array}{c}
x_{i}^{\prime} \\
y_{i}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
m_{1} & m_{2} \\
m_{3} & m_{4}
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]+\left[\begin{array}{l}
t_{1} \\
t_{2}
\end{array}\right]
$$

Slide credit: Kristen Grauman

Fitting an affine transformation \qquad
$\left[\begin{array}{cccccc}x_{i} & y_{i} & 0 & 0 & 1 & 0 \\ 0 & 0 & x_{i} & y_{i} & 0 & 1 \\ & & \cdots & & & \end{array}\right]\left[\begin{array}{c}m_{1} \\ m_{2} \\ m_{3} \\ m_{4} \\ t_{1} \\ t_{2}\end{array}\right]=\left[\begin{array}{c}\cdots \\ x_{i}^{\prime} \\ y_{i}^{\prime} \\ \cdots\end{array}\right]$

- How many matches (correspondence pairs) do we need to solve for the transformation parameters?

Affine: \# correspondences?

How many correspondences needed for affine?

Fitting an affine transformation

$$
\left[\begin{array}{cccccc}
x_{i} & y_{i} & 0 & 0 & 1 & 0 \\
0 & 0 & x_{i} & y_{i} & 0 & 1 \\
& \cdots & & & 1
\end{array}\right]\left[\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4} \\
t_{1} \\
t_{2}
\end{array}\right]=\left[\begin{array}{c}
\cdots \\
x_{i}^{\prime} \\
y_{i}^{\prime} \\
\cdots
\end{array}\right]
$$

- How many matches (correspondence pairs) do we need to solve for the transformation parameters?
- Once we have solved for the parameters, how do we compute the coordinates of the corresponding point for $\left(x_{\text {new }}, y_{\text {new }}\right)$?
- Where do the matches come from?

What are the correspondences?

\qquad
\qquad
\qquad
\qquad
\qquad e.g., simplest approach: scan with template, and compute SSD or correlation between list of pixel intensities in the patch

- Later in the course: how to select regions using more robust descriptors.

Fitting an affine transformation

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fitting an affine transformation

Example from UBC SIFT Demo

Fitting an affine transformation

Example from UBC SIFT Demo

Fitting an affine transformation

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Outliers

\qquad

- Outliers can hurt the quality of our parameter estimates, e.g.,
- an erroneous pair of matching points from two images
\qquad
\qquad
- an edge point that is noise, or doesn't belong to the line we are fitting. \qquad

\qquad
\qquad
\qquad

Outliers affect least squares fit

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Outliers affect least squares fit

Slide credit: Kristen Grauman
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RANSAC

- RANdom Sample Consensus
- Approach: we want to avoid the impact of outliers, so let's look for "inliers", and use those only.
- Intuition: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

Slide credit: Kristen Grauman

RANSAC: General form

- RANSAC loop:

1. Randomly select a seed group of points on which to base transformation estimate
2. Compute transformation from seed group
3. Find inliers to this transformation
4. If the number of inliers is sufficiently large, re-compute estimate of transformation on all of the inliers

- Keep the transformation with the largest number of inliers

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RANSAC for line fitting

\qquad
Repeat \boldsymbol{N} times:

- Draw \boldsymbol{s} points uniformly at random \qquad
- Fit line to these \boldsymbol{s} points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than t)
- If there are \boldsymbol{d} or more inliers, accept the line and refit using all inliers
\qquad
\qquad
\qquad
\qquad
\qquad

RANSAC pros and cons

\qquad

- Pros
- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
- Lots of parameters to tune
- Doesn't work well for low inlier ratios (too many iterations, or can fail completely)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Today

- Feature-based alignment
-2D transformations \qquad
- Affine fit
- RANSAC

Coming up:
alignment and image stitching

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

