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Object detection

● Bounding boxes are hard to collect

● Why do we even need them?

● Smaller objects seem easier to be 
detected by points than boxes.

● Points are sometimes enough for 
weaker localization, and counting 
instances.
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Technical contributions

● Modified Hausdorff loss to train a Fully Convolutional Neural Network 
(FCN) for object localization.

● Joint estimation of location and number of objects without access to 
bounding boxes.

● Outperforms state-of-the-art generic object detectors; achieves 
comparable results for crowd counting.



Localizing points

           Object localization            Estimating point locations

Model predictions Ground truth

Compute similarity



Visualizing Hausdorff Distance

● Largest smallest distance 
between points in X and Y

● Intuition: measure of 
distance of worst outlier

● Not a very good measure 
for point localization

● Not differentiable w.r.t the 
FCN output

Image taken from Ribera et al 2019



Improvements to Hausdorff Distance
● We need a distance measure that is differentiable w.r.t the FCN output p
● Every output pixel/activation needs to contribute to loss
● High activations near ground truth should have little penalty, and low 

activations far from the closest ground truth should have little penalty

+

High loss to activations far from 
ground truth Discourages all-zero activations,

as term inside generalized mean is 
maximized by all-zeros



Intuition: penalize high activations far from ground truth.



The entire output 
activation matrix

Sum of all 
activations

Summing over all
pixel coordinates

Activation at coordinate x

Euclidean distance to closest 
ground truth coordinate

Intuition: penalize high activations far from ground truth.
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Normalize by the 
number of ground 
truth points

Summing over all 
ground truth points

Euclidean distance to ground truth 
point y (not necessarily closest)

Generalized mean taken 
over all pixel coordinates

Maximum possible 
Euclidean distance 
(diagonal of the img)

Intuition: discourage all zero activations



Px = 1, close to gt True positive low low ✔

Px = 1, far from gt False positive high low ✔

Px = 0, close to gt False negative low dmax ✔

Px = 0, far from gt True negative low dmax ?



Generalized Mean 
to the Rescue!



where a =
Num 
pixels = n

M𝝰 = -∞ = min{ f(a1), f(a2), … f(an) }
...
M𝝰 = -1   =                              (harmonic mean)

M𝝰 =  0   =                              (geometric mean)

M𝝰 = +1 =                              (arithmetic mean)
…
M𝝰 = +∞ = max{ f(a1), f(a2), … f(an) }
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0 1 0

0 0 0

0 0 0

Ground truth (Y)

Predictions (px)

d(x, y)

1 1

1 2.83

1.41 2.83

2 2.83

2 2.83

2.23 2.83

2.23 2.83

2.83 2.83

minimum = 1 (𝝰 = -∞)

harmonic mean = 1.78 (𝝰 = -1)

geometric mean = 2.52 (𝝰 = 0)

arithmetic mean = 2.63 (𝝰 = 1) 

maximum = 2.83 (𝝰 = +∞) 

Dmax = 2.83

How can the harmonic mean help?



Px = 1, close to gt True positive low low ✔

Px = 1, far from gt False positive high low ✔

Px = 0, close to gt False negative low dmax ✔

Px = 0, far from gt True negative low dmax ?

Harmonic mean greatly weighted 
towards the lower values of 



Px = 1, close to gt True positive least

Px = 1, far from gt False positive most

Px = 0, close to gt False negative most

Px = 0, far from gt True negative middle

penalty

least penalty

most penalty

Penalty 
Amount



To tie it all together:

● Fully differentiable w.r.t output of FCN
● Converges to maximize true positives true negatives, 

and minimize all else

+
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Computing model’s predictions

Predicted probability 
map
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Computing model’s predictions

Predicted probability 
map

Thresholding

EM 

Object count

Model’s prediction
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Datasets

● 80/10/10 train, validation and test split for each dataset
● Images resized to 256x256
● Augmented with random horizontal flips



Metrics

Ground Truth

True Positive

r = 1 

False Positive

● Precision and Recall can be 100% even if the model estimates 2 object locations per ground 
truth point.

● MAE, RMSE and MAPE are reported to counteract this.

False Negative



Experimental Evaluation

● The bigger “r” is, the easier the problem becomes 



Experimental Evaluation

● Comparison against Faster-RCNN with bounding boxes of 20x20 centered at true 
point 

● Model also evaluated on ShanghaiTech Part B achieving MAE of 19.9



Strengths
● Dramatically reduces amount of work to annotate a dataset
● No major architectural constraints
● Tested on multiple datasets
● Re-formulation of the object localization problem as the minimization of the 

distances between a set of points



Weaknesses

● No indication of the size, orientation, occlusion, etc of the object predicted, 
only center position and instance count

● No comparison between the weighted Hausdorff Distance and other 
pixel-wise losses such as L2 or MSE.

● Each dataset contained only one type of object, does the method work when 
trying to detect a wide variety of objects?

● How does it perform with videos, where the objects can exhibit a wide variety 
of behaviors? 

● Notation for generalized mean is misleading.
● Motivation of WHD is done assuming alpha = -inf. But in practice they use 

alpha = -1.



Thank You!


