Locating Objects Without Bounding Boxes

Ribera et al. (CVPR 2019)

Utkarsh Ojha, Aron Sarmasi, Rafael A. Rivera-Soto

• Bounding boxes are hard to collect

- Bounding boxes are hard to collect
- Why do we even need them?

- Bounding boxes are hard to collect
- Why do we even need them?
- Smaller objects seem easier to be detected by **points** than boxes.

- Bounding boxes are hard to collect
- Why do we even need them?
- Smaller objects seem easier to be detected by **points** than boxes.
- Points are sometimes enough for weaker localization, and counting instances.

Goal of the paper

Input

Goal of the paper

Input

Predicted locations

Goal of the paper

Technical contributions

- Modified Hausdorff loss to train a *Fully* Convolutional Neural Network (FCN) for object localization.
- Joint estimation of location and number of objects without access to bounding boxes.
- Outperforms state-of-the-art generic object detectors; achieves comparable results for crowd counting.

Localizing points

Model predictions

Ground truth

Visualizing Hausdorff Distance

- Largest smallest distance between points in X and Y
- Intuition: measure of distance of worst outlier
- Not a very good measure for point localization
- Not differentiable w.r.t the FCN output

Image taken from Ribera et al 2019

Improvements to Hausdorff Distance

- We need a distance measure that is differentiable w.r.t the FCN output p
- Every output pixel/activation needs to contribute to loss
- High activations near ground truth should have little penalty, and low activations far from the closest ground truth should have little penalty

$$d_{\mathrm{WH}}(p,Y) = \underbrace{\frac{1}{S+\epsilon} \sum_{x \in \Omega} p_x \min_{y \in Y} d(x,y)}_{x \in \Omega} + \underbrace{\frac{1}{|Y|} \sum_{y \in Y} M_{\alpha} \left[p_x d(x,y) + (1-p_x) d_{max} \right]}_{y \in Y}$$

High loss to activations far from ground truth

Discourages all-zero activations, as term inside generalized mean is maximized by all-zeros

Intuition: penalize high activations far from ground truth.

$$d_{\mathrm{WH}}(p,Y) = \frac{1}{\mathcal{S} + \epsilon} \sum_{x \in \Omega} p_x \min_{y \in Y} d(x,y)$$

Intuition: penalize high activations far from ground truth.

Intuition: discourage all zero activations

+
$$\frac{1}{|Y|} \sum_{y \in Y} M_{\alpha} [p_x d(x, y) + (1 - p_x) d_{max}]$$

Intuition: discourage all zero activations

 $p_x d(x, y) + (1 - p_x) d_{max}$

Px = 1, close to gt	True positive	low	low	\checkmark
Px = 1, far from gt	False positive	high	low	\checkmark
Px = 0, close to gt	False negative	low	dmax	\checkmark
Px = 0, far from gt	True negative	low	dmax	?

Generalized Mean to the Rescue!

$$\underset{\substack{a \in A \\ \text{pixels = n}}}{\overset{M_{\alpha}}{=}} \left[f(a) \right] = \left(\frac{1}{|A|} \sum_{a \in A} f^{\alpha}(a) \right)^{\frac{1}{\alpha}} \text{ where } a = p_x d(x, y) + (1 - p_x) d_{max}$$

How can the harmonic mean help?

Ground truth (Y)

Dmax = 2.83

Predictions (px)

0	1	0
0	0	0
0	0	0

How can the harmonic mean help?

d(x. v)

Ground truth (Y)

Predictions (px)

0	1	0
0	0	0
0	0	0

1	1
1	2.83
1.41	2.83
2	2.83
2	2.83
2.23	2.83
2.23	2.83
2.83	2.83

 $p_x d(x, y) + (1 - p_x) d_{max}$

Dmax = 2.83

minimum = 1 (α = - ∞)

harmonic mean = 1.78 (α = -1)

geometric mean = 2.52 (α = 0)

arithmetic mean = 2.63 (α = 1)

maximum = 2.83 ($\mathbf{a} = +\infty$)

 $p_x d(x, y) + (1 - p_x) d_{max}$

Px = 1, close to gt	True positive	low	low	V	
Px = 1, far from gt	False positive	high	low	V	
Px = 0, close to gt False negative		low	dmax	V	•
Px = 0, far from gt True negative		low	dmax	?	•

Harmonic mean greatly weighted towards the lower values of $p_x d(x, y) + (1 - p_x) d_{max}$

most penalty			$\frac{1}{ Y } \sum_{y \in Y} M_{\alpha} \left[p_x d(x, y) + (1 - p_x) d_{max} \right]$
		Penalty Amount	t penalty
Px = 1, close to gt	True positive	least	least '
Px = 1, far from gt	False positive	most	penalty $\frac{1}{1} \sum p_{\pi} \min d(x, y)$
Px = 0, close to gt	False negative	most	$\mathcal{S} + \epsilon \sum_{x \in \Omega} \sum_{y \in Y} \sum_{y \in Y} \mathcal{S}(x, y)$
Px = 0, far from gt	True negative	middle	

To tie it all together:

$$d_{\rm WH}(p,Y) = \frac{1}{S+\epsilon} \sum_{x\in\Omega} p_x \min_{y\in Y} d(x,y) + \frac{1}{|Y|} \sum_{y\in Y} M_{\alpha} \left[p_x d(x,y) + (1-p_x) d_{max} \right]$$

- Fully differentiable w.r.t output of FCN
- Converges to maximize true positives true negatives, and minimize all else

Computing model's predictions

Predicted probability map

Computing model's predictions

Computing model's predictions

Overall training objective

$$L(p,Y) = d_{wh}(p,Y) + L_{reg}(C - \hat{C}(p)))$$

Overall training objective

$$L(p,Y) = d_{wh}(p,Y) + L_{reg}(C - \hat{C}(p)))$$

Datasets

- 80/10/10 train, validation and test split for each dataset
- Images resized to 256x256
- Augmented with random horizontal flips

Metrics

False Negative r = 1 Ground Truth False Positive False Positive

$$\begin{aligned} Precision &= \frac{TP}{TP + FP} \\ Recall &= \frac{TP}{TP + FN} \\ FScore &= 2\frac{Precision * Recall}{Precision + Recall} \end{aligned}$$

- Precision and Recall can be 100% even if the model estimates 2 object locations per ground truth point.
- MAE, RMSE and MAPE are reported to counteract this.

Experimental Evaluation

• The bigger "r" is, the easier the problem becomes

Experimental Evaluation

- Comparison against Faster-RCNN with bounding boxes of 20x20 centered at true point
- Model also evaluated on ShanghaiTech Part B achieving MAE of 19.9

Metric	Faster-RCNN	Ours					Metric	ł
Precision Recall	81.1% 76.7%	95.2 % 96.2 %	Method	Precision	Recall	AHD	Precision Recall	8
F-score	78.8 %	95.7 %	Swirski [53]	77 %	77 %	-	F-score	8
AHD	7.6 px	4.5 px	ExCuSe [13]	77 %	77 %	-	AHD	9
MAE	4.7	1.4	Faster-RCNN	99 5 %	99 5 %	2.7 px	MAE	9
RMSE	5.6	1.8		00 5 07	00 5 01	2.7 px	RMSE	1
MAPE	14.8%	4.4 %	Ours	99.3 %	99.5 %	2.5 px	MAPE	1

Metric	Faster-RCNN	Ours
Precision	86.6 %	88.1 %
Recall	78.3 %	89.2 %
F-score	82.2 %	88.6 %
AHD	9.0 px	7.1 px
MAE	9.4	1.9
RMSE	13.4	2.7
MAPE	17.7 %	4.2 %

Strengths

- Dramatically reduces amount of work to annotate a dataset
- No major architectural constraints
- Tested on multiple datasets
- Re-formulation of the object localization problem as the minimization of the distances between a set of points

Weaknesses

- No indication of the size, orientation, occlusion, etc of the object predicted, only center position and instance count
- No comparison between the weighted Hausdorff Distance and other pixel-wise losses such as L2 or MSE.
- Each dataset contained only one type of object, does the method work when trying to detect a wide variety of objects?
- How does it perform with videos, where the objects can exhibit a wide variety of behaviors?
- Notation for generalized mean is misleading.
- Motivation of WHD is done assuming alpha = -inf. But in practice they use alpha = -1.

Thank You!