Deep Tree Learning for Zero-shot Face Anti-Spoofing

Karen Lu, Siyuan Yao, Jingyuan Li

Background

What are some of the attacks?

✓ Real Face

X Prints Attack X Replay Attack X 3D Mask Attack

Face anti-spoofing? Zero-Shot Face Anti-spoofing?

Face anti-spoofing - Designed to prevent face recognition systems from recognizing fake faces

Zero-Shot Face Anti-spoofing - detection of unknown spoof attacks

Unknown: never seen during the training

Prior ZSFA works:

Drawbacks:

Lacking spoof type variety

No spoof knowledge

Limitation of feature selection

2 types -> 13 types

Semantic embedding Hierarchical features Deep Tree Network

Datasets

Dataset	Year	Num. of	Fa	ce variations			Total num. of				
		subj./vid.	pose	expression	lighting	replay	print	3D mask	makeup	partial	spoof types
CASIA-FASD [50]	2012	50/600	Frontal	No	No	1	2	0	0	0	3
Replay-Attack [15]	2012	50/1,200	Frontal	No	Yes	1	1	0	0	0	2
HKBU-MARs [30]	2016	35/1,008	Frontal	No	Yes	0	0	2	0	0	2
Oulu-NPU [9]	2017	55/5,940	Frontal	No	No	1	1	0	0	0	2
SiW [32]	2018	165/4,620	$[-90^{\circ}, 90^{\circ}]$	Yes	Yes	1	1	0	0	0	2
SiW-M	2019	493/1,630	$[-90^{\circ}, 90^{\circ}]$	Yes	Yes	1	1	5	3	3	13

Table 1: Comparing our SiW-M with existing face anti-spoofing datasets.

Contributions:

 Conduct an extensive study of zero-shot face anti-spoofing on 13 different types of spoof attacks;

• Propose a Deep Tree Network (DTN) to learn features hierarchically and detect unknown spoof attacks;

• Collect a new database for ZSFA and achieve the state-of-the-art performance on multiple testing protocols.

Deep Tree Networks

Deep Tree Network

Assumptions:

- 1. For each spoof type, we have homogenous features
- 2. Among different spoof types, there are distinct features

Goal

- 1. Discover semantic subgroups for known spoofs
- 2. Create a hierarchical structure to learn the features

Convolutional Residual Unit

Deep Tree Network

Assumptions:

- 1. For each spoof type, we have homogenous features
- 2. Among different spoof types, there are distinct features

256×256×6

00000

Feature Space (b)

z

Goal

- 1. Discover semantic subgroups for known spoofs
- 2. Create a hierarchical structure to learn the features

Tree Routing Network

Step 1: Compression

- reduces the computing burden
- 400GB ~ 0.1GB

Step 2: Routing Function - batch norm

Tree Routing

Previous Work

dim = H x W x 6

 $\mathbf{x} = f(\mathbf{I} \mid \theta) \in \mathbb{R}^m$

Contribution

Routing Function

$$\varphi(\boldsymbol{x}) = \boldsymbol{x}^T \cdot \boldsymbol{v} + \tau,$$

Routing Function

$$\varphi(\mathbf{x}) = (\mathbf{x} - \underline{\boldsymbol{\mu}})^T \cdot \mathbf{v}, \quad ||\mathbf{v}|| = 1,$$

PCA

Recap: Principal Components Analysis

Principal Components Analysis is a linear algebra method that given a data matrix **maps** the vectors into a new space which the direction of **highest variance** is extracted.

$$egin{aligned} t_{k(i)} &= \mathbf{x}_{(i)} \cdot \mathbf{w}_{(k)} & ext{ for } & i = 1, \dots, n & k = 1, \dots, l \ \mathbf{w}_{(1)} &= rg\max_{\|\mathbf{w}\|=1} \left\{ \sum_i \left(t_1
ight)_{(i)}^2
ight\} &= rg\max_{\|\mathbf{w}\|=1} \left\{ \sum_i \left(\mathbf{x}_{(i)} \cdot \mathbf{w}
ight)^2
ight\} \end{aligned}$$

https://en.wikipedia.org/wiki/Principal_compone nt_analysis

Contribution: Adding PCA

$$\varphi(\mathbf{x}) = (\mathbf{x} - \boldsymbol{\mu})^T \cdot \mathbf{v}, \quad \|\mathbf{v}\| = 1$$

$$\arg\max_{\mathbf{v},\theta} \lambda = \arg\max_{\mathbf{v},\theta} \mathbf{v}^T \bar{\mathbf{X}} \bar{\mathbf{X}} \bar{\mathbf{x}} \mathbf{v}.$$
demeaned data X

$$\mathcal{L}_{route} = \exp(-\alpha \mathbf{v}^T \bar{\mathbf{X}}_{\mathcal{S}}^T \bar{\mathbf{X}}_{\mathcal{S}} \mathbf{v}) + \beta \underline{\mathrm{Tr}(\bar{\mathbf{X}}_{\mathcal{S}}^T \bar{\mathbf{X}}_{\mathcal{S}})}_{\text{Regularizer}}$$

What data should we use for training the tree?

How do we leverage the existing data to train the spoof tree?

- use all spoof data to learn semantic subgroups of known spoofs
- use general data tree to learn spoof vs live data

Problems?

- Live tree does not convey semantic meaning and doesn't help find the route
- General data may result in imbalanced subgroups \rightarrow cause bias

Solutions against Bias

- Only use spoof samples to construct X_s
- Suppress the responses of live data to 0 (aka. Ignore live data when training routing function)
- Suppress the responses of spoof data that doesn't visit the node

$$\mathcal{L}_{uniq} = -\frac{1}{N} \sum_{\mathbf{I}_k \in \mathcal{S}} \left\| \left\| \bar{\mathbf{x}}_k^T \mathbf{v} \right\|^2 + \frac{1}{N^-} \sum_{\mathbf{I}_k \in \mathcal{S}^-} \left\| \left\| \bar{\mathbf{x}}_k^T \mathbf{v} \right\|^2 \right\|$$
(6)

Deep Tree Network

Assumptions:

- 1. For each spoof type, we have homogenous features
- 2. Among different spoof types, there are distinct features

Goal

- 1. Discover semantic subgroups for known spoofs
- 2. Create a hierarchical structure to learn the features

Supervised Feature Learning (SFL)

Classification Supervision

$$\mathcal{L}_{class} = \frac{1}{N} \sum_{I_k \in \mathcal{S}} \left\{ (1 - y_k) \log(1 - p_k) - y_k \log p_k \right\}$$
$$p_k = \frac{\exp(\mathbf{w}_1^T \mathbf{c}_k)}{\exp(\mathbf{w}_0^T \mathbf{c}_k) + \exp(\mathbf{w}_1^T \mathbf{c}_k)},$$

 $\mathbf{c}_k \in \mathbb{R}^{500}$

Supervised Feature Learning (SFL)

Pixel-wise Supervision

Putting it all Together

Spoof in the Wild Database

Database Composition

Live - 493 subjects, 660 videos Spoof - 13 types, 968 videos

(3)													DAVENPORT
Live (493 / 660)	Replay	Print (60 / 118)	Half Mask (12 / 72)	Silicone (12 / 27)	Transparent (88 / 88)	Papercraft (6 / 17)	Mannequin (12 / 40)	Obfuscation (23 / 23)	Imperson. (61 / 61)	Cosmetic (37 / 50)	Funny Eye (160 / 160)	Paperglasses (122 / 127)	Partial Paper (86 / 86)
(4937000)	(21/99)	(007118)		1	BD Mask Attack	s		Ν	Akeup Attack	s		Partial Attacks	

Dataset Comparison – Number of Videos

Dataset Comparison – Number of Subjects

Dataset Comparison – Spoof Attack Types

Leave-one-out Test Protocol

• Training

- 12 types of attacks
- \circ 80% of the live video
- Testing
 - 1 type of attacks
 - \circ 20% of the live video

Experiment Setup and Results

Experimental Setup

- Databases
 - SiW-M
 - CASIA
 - Replay-Attack
 - MSU-MFSD

Experimental Setup

- Metrics
 - APCER
 - Attack Presentation Classification Error Rate
 - False Acceptance Rate (FAR)
 - BPCER
 - Bona Fide Presentation Classification Error Rate
 - False Rejection Rate (FRR)
 - ACER
 - Average Classification Error Rate
 - EER
 - Equal Error Rate
 - AUC
 - Area Under Curve

Experimental Setup

- Parameter Setting
 - Constant learning rate 0.001
 - Batch size 32
 - \circ 15 epochs
 - Randomized weights
 - 0 mean
 - 0.02 standard deviation

Ablation Study - Fusion Method

- Two values for final classification
 - Norm of the mask maps
 - Binary spoof scores
- Comparing ACER (lower is better)
 - Norm of the mask maps alone 31.7%
 - Binary spoof scores alone 20.5 %
 - Maximum of two 21%
 - Average of two 19.3%
- Result Average of two performs the best

Ablation Study - Routing Function

Proving the necessity of routing function

Strategies	APCER	BPCER	ACER	EER
Random routing	37.1	16.1	26.6	24.7
Pick-one-leaf	51.2 ± 20.0	18.1 ± 4.9	34.7 ± 8.8	24.1 ± 3.1
Proposed routing function	17.0	21.5	19.3	19.8

Table 3: Compare models with different routing strategies.

Ablation Study - Loss Function

Showing the effect of route loss, and the unique loss

Methods	APCER	BPCER	ACER	EER
MPT [44] Limited routing	31.4	24.2	27.8	27.3
Live data $$, Spoof data $$, Unique Loss \times	1.4	73.3	37.3	31.2
Live data \times , Spoof data $$, Unique Loss \times	70.0	12.7	41.3	44.8
Live data $$, Spoof data $$, Unique Loss $$	54.2	12.5	33.4	36.2
Live data \times , Spoof data $$, Unique Loss $$	17.0	21.5	19.3	19.8

Testing - Existing Databases

Consistent and superior performance

Methods		CASIA [[50]		Replay-Attack	: [15]		Overall			
Wiethous	Video	Cut Photo	Warped Photo	Video	Digital Photo	Printed Photo	Printed Photo	HR Video	Mobile Video	Overall	
OC-SVM _{RBF} +BSIF [3]	70.7	60.7	95.9	84.3	88.1	73.7	64.8	87.4	74.7	78.7 ± 11.7	
SVM_{RBF} +LBP [9]	91.5	91.7	84.5	99.1	98.2	87.3	47.7	99.5	97.6	88.6 ± 16.3	
NN+LBP [45]	94.2	88.4	79.9	99.8	95.2	78.9	50.6	99.9	93.5	86.7 ± 15.6	
Ours	90.0	97.3	97.5	99.9	99.9	99.6	81.6	99.9	97.5	95.9 ± 6.2	

Table 2: AUC (%) of the model testing on CASIA, Replay, and MSU-MFSD.

Testing - SiW-M

Testing Comparison on SiW-M

Testing - SiW-M

Methods	Matrice (%)	Penlay	Drint	Mask Attacks					Ν	Makeup Attac	ks		Average		
Wiethous	Metrics (70)	Replay	1 mit	Half	Silicone	Trans.	Paper	Manne.	Obfusc.	Imperson.	Cosmetic	Funny Eye	Paper Glasses	Partial Paper	Average
	APCER	19.1	15.4	40.8	20.3	70.3	0.0	4.6	96.9	35.3	11.3	53.3	58.5	0.6	32.8 ± 29.8
SVMpppLI BD [0]	BPCER	22.1	21.5	21.9	21.4	20.7	23.1	22.9	21.7	12.5	22.2	18.4	20.0	22.9	21.0 ± 2.9
SVNIRBFTLDI [9]	ACER	20.6	18.4	31.3	21.4	45.5	11.6	13.8	59.3	23.9	16.7	35.9	39.2	11.7	26.9 ± 14.5
	EER	20.8	18.6	36.3	21.4	37.2	7.5	14.1	51.2	19.8	16.1	34.4	33.0	7.9	24.5 ± 12.9
	APCER	23.7	7.3	27.7	18.2	97.8	8.3	16.2	100.0	18.0	16.3	91.8	72.2	0.4	38.3 ± 37.4
Auxiliary [22]	BPCER	10.1	6.5	10.9	11.6	6.2	7.8	9.3	11.6	9.3	7.1	6.2	8.8	10.3	8.9 ± 2.0
Auxiliary [52]	ACER	16.8	6.9	19.3	14.9	52.1	8.0	12.8	55.8	13.7	11.7	49.0	40.5	5.3	23.6 ± 18.5
	EER	14.0	4.3	11.6	12.4	24.6	7.8	10.0	72.3	10.1	9.4	21.4	18.6	4.0	17.0 ± 17.7
	APCER	1.0	0.0	0.7	24.5	58.6	0.5	3.8	73.2	13.2	12.4	17.0	17.0	0.2	17.1 ± 23.3
Ours	BPCER	18.6	11.9	29.3	12.8	13.4	8.5	23.0	11.5	9.6	16.0	21.5	22.6	16.8	16.6 ± 6.2
	ACER	9.8	6.0	15.0	18.7	36.0	4.5	7.7	48.1	11.4	14.2	19.3	19.8	8.5	16.8 ± 11.1
	EER	10.0	2.1	14.4	18.6	26.5	5.7	9.6	50.2	10.1	13.2	19.8	20.5	8.8	16.1 ± 12.2

Table 5: The evaluation and comparison of the testing on SiW-M.

Analysis - Visualization of the Tree Routing

Analysis - Tree Routing Distribution

Analysis - t-SNE Visualization

Figure 7: t-SNE Visualization of the DTN leaf features.

Future Development

Future Development

- Expand the size of SiW-M
- Expand the tree by adding more semantic sub-groups and tree layers

