Image Deformation Meta-Networks for One-Shot Learning

- Zitian Chen et.al

Presented By Shivani T, Sarmishta B, Sahana M

Problem Statement

Traditional Object recognition models use large sets of labelled data to accurately recognize the objects.

One Shot Learning

Learn the object information using **one or few** training image samples

Labelled Data

Novel Data

Related Work

Metric Learning

- Siamese Networks
- Deals with optimizing the metrics.
- Metric: Similarity

Data Augmentation

- Techniques like rotating, cropping, flipping, rescaling, adding noise.
- Synthesising new Images GANs

Cons:

- The visual similarity of the new images is the same
- Doesn't directly work on increasing one-shot accuracy.

Mixup augmentation

Cons:

- Linear combination, without taking into account structural relation between patches.
- Label of generated image is just linear combination of label vectors.

Meta Learning

1. Meta-training

2. Meta-testing

IDeMe-Net

(a)

(b)

(c)

(e)

Contributions - IDeMe-Net

- 1. Deformation network using meta learning
- 2. Exploiting the complementarity and interaction between the probe and gallery image patches.
- 3. Increase the state-of art performance of ImageNet and *mini*Imagenet datasets.

Data Sampling

Model Architecture-Overview

Figure 2. The overall architecture of our image deformation meta-network (IDeMe-Net).

Deformation Sub-Network

Generalization- For any ${\rm I}_{\rm probe}$, we sample ${\rm n}_{\rm aug}$ gallery images and produce ${\rm n}_{\rm aug}$ synthesized deformed images

 $\left\{ \left(\mathbf{I}_{probe}^{i}, y_{probe}^{i}\right), \left\{ \left(\mathbf{I}_{syn}^{i,j}, y_{probe}^{i,j}\right) \right\}_{i=1}^{n_{aug}} \right\}_{i=1}^{N \times n}$

Embedded Sub-Network

Training Losses

Prototype Loss:

$$\min_{\theta} \mathbb{E}_{L \sim D_{base}} \mathbb{E}_{S,G,Q \sim L} \left[\sum_{(\mathbf{I}_i, y_i) \in Q} -\log P_{\theta} \left(y_i \mid \mathbf{I}_i \right) \right],$$

-

$$P_{\theta} \left(y_{i} = c | \mathbf{I}_{i} \right) = \frac{\exp\left(- \left\| f_{\theta_{emb}} \left(\mathbf{I}_{i} \right) - p_{\theta}^{c} \right\| \right)}{\sum_{j=1}^{N} \exp\left(- \left\| f_{\theta_{emb}} \left(\mathbf{I}_{i} \right) - p_{\theta}^{j} \right\| \right)},$$

// · // denotes the euclidean distance.

$$\begin{split} p_{\theta}^{c} &= \frac{1}{Z} \sum_{(\mathbf{I}_{i}, y_{i}) \in \tilde{S}} f_{\theta_{emb}} \left(\mathbf{I}_{i} \right) \cdot \left[\! \left[y_{i} = c \right] \! \right], \\ \text{Prototype vector } p_{c} \text{ for each class in S:} \end{split}$$

Putting it all together - Training end-to-end

Figure 2. The overall architecture of our image deformation meta-network (IDeMe-Net).

Algorithm

Learn the feature maps for S

Synthesise n_{aug} Images per prob

Algorithm 1 Meta-training procedure of our IDeMe-Net f_{θ} . G is the fixed gallery constructed from C_{base} . 1: procedure META-TRAIN_EPISODE 2: The procedure of one meta-training episode $L \leftarrow$ randomly sample N classes from C_{base} $S \leftarrow$ randomly sample instances belonging to L4: //sample the support set 5: Random sampling for episodes $Q \leftarrow$ randomly sample instances belonging to L 6: //sample the query set 7: train the prototype classifier P from $f_{\theta_{omb}}(S)$ 8: ▷ initialize the augment support set $S \leftarrow S$ \triangleright enumerate the chosen classes for c in L do $pool \leftarrow use P$ to select $\epsilon\%$ images in G that have 1: Generate the Pool from the the highest class probability of c gallery. for (\mathbf{I}_{prob}, c) in S_c do for j = 1 to n_{aua} do $\mathbf{I}_{gallery} \leftarrow$ randomly sample instances from pool 15: $\mathbf{I}_{syn} \leftarrow f_{\theta_{def}}(\mathbf{I}_{prob}, \mathbf{I}_{gallery})$ $\tilde{S} \leftarrow \tilde{S} \cup (\mathbf{I}_{sun}, c)$ 16: 17: end for end for 18: end for 19: train the prototype classifier \tilde{P} from $f_{\theta_{emb}}(\tilde{S})$ 20: use \tilde{P} to classify $f_{\theta_{emb}}(Q)$ and obtain the prototype 21:loss use the softmax classifier to classify $f_{\theta_{emb}}(\tilde{S})$ and 22: Train and Propagate Loss obtain the CELoss update θ_{emb} with the CELoss 23: 24: update θ_{def} with the prototype loss 25: end procedure

Experimental Setup

- 2 Benchmarks:
 - imageNet 1K Challenge
 - minilmageNet

- First 20 epochs, train one sub-network at a time
- Every 30 epochs, reduce learning rate
- End to end convergence after 100 epochs

Image 1K Challenge Dataset

	Method	m = 1	2	5	10	20
Baselines	Softmax	-/16.3	- /35.9	-/57.4	-/67.3	- /72.1
	LR	18.3/42.8	26.0/54.7	35.8/66.1	41.1/71.3	44.9/74.8
	SVM	15.9/36.6	22.7/48.4	31.5/61.2	37.9/69.2	43.9/74.6
	Prototype Classifier	17.1/39.2	24.3/51.1	33.8/63.9	38.4/69.9	44.1/74.7
	Matching Network [28]	-/43.0	-/54.1	-/64.4	-/68.5	-/72.8
Competitors	Prototypical Network [22]	16.9/41.7	24.0/53.6	33.5/63.7	37.7/68.2	42.7/72.3
	Generation-SGM [9]	-/34.3	-/48.9	-/64.1	-/70.5	- /74.6
	PMN [30]	-/43.3	-/55.7	-/68.4	-/74.0	-/77.0
	PMN w/ H [30]	-/45.8	-/ 57.8	-/69.0	-/74.3	-/77.4
	Cos & Att. [8]	-/46.0	-/57.5	-/69.1	-/ 74.8	-/ 78.1
	CP-AAN [6]	-/48.4	-/ 59.3	-/70.2	-/76.5	-/79.3
Augmentation	Flipping	17.4/39.6	24.7/51.2	33.7/64.1	38.7/70.2	44.2/74.5
	Gaussian Noise	16.8/39.0	24.0/51.2	33.9/63.7	38.0/69.7	43.8/74.5
	Gaussian Noise (feature level)	16.7/39.1	24.2/51.4	33.4/63.3	38.2/69.5	44.0/74.2
	Mixup [36]	15.8/38.7	24.6/51.4	32.0/61.1	38.5/69.2	42.1/72.9
Ours	IDeMe-Net	23.1/51.0	30.1/60.9	39.3/70.4	42.7/ 73.4	45.0 /75.1

Table 1. Top-1 / Top-5 accuracy (%) on novel classes of the ImageNet 1K Challenge dataset. We use ResNet-10 as the embedding sub-network. *m* indicates the number of training examples per class. Our IDeMe-Net consistently achieves the best performance.

Image 1K Challenge Dataset

Method	m = 1	2	5	10
Softmax	- /28.2	- /51.0	-/71.0	-/78.4
SVM	20.1/41.6	29.4/57.7	42.6/72.8	49.9/79.1
LR	22.9/47.9	32.3/61.3	44.3/73.6	50.9/78.8
Proto-Clsf	20.8/43.1	29.9/58.1	42.4/72.3	49.5/79.0
G-SGM [9]	- /47.3	- /60.9	- /73.7	- /79.5
PMN [30]	-/53.3	-/65.2	-/75.9	-/80.1
PMN w/ H [30]	-/54.7	-/66.8	- / 77.4	-/ 81.4
IDeMe-Net (Ours)	30.3/60.1	39.7/69.6	47.5/77.4	51.3 /80.2

Table 2. Top-1 / Top-5 accuracy (%) on novel classes of the Imagenet 1K Challenge dataset. We use ResNet-50 as the embedding sub-network. m indicates the number of training examples per class. Proto-Clsf and G-SGM denote the prototype classifier and generation SGM [9], respectively.

Image 1K Challenge Dataset - Ablation Study

Figure 3. Ablation study on ImageNet 1K Challenge dataset:

Ablation Study Conclusions

- Using cross-entropy loss to update the embedding sub network & prototype loss to update the deformation network achieves the best performance
- 2. Selecting the gallery images is the key to diversifying the deformed images
- 3. Performance improvements can mainly be attributed to the diversified deformed images not the embedding sub-network

	Method	m = 1	2	5	10	20
Baselines	LR	18.3/42.8	26.0/54.7	35.8/66.1	41.1/71.3	44.9/74.8
	Prototype Classifier	17.1/39.2	24.3/51.1	33.8/63.9	38.4/69.9	44.1/74.7
	IDeMe-Net - CELoss	21.3/50.0	28.0/58.3	37.7/69.4	41.3/71.6	44.3/74.3
	IDeMe-Net - Proto Loss	15.3/ <mark>36</mark> .7	21.4/50.4	31.7/62.0	37.9/69.0	43.7/73.7
	IDeMe-Net - Predict	17.0/39.3	24.0/50.7	33.6/63.5	38.0/69.2	43.7/73.8
Variants	IDeMe-Net - Aug. Testing	17.0/39.1	24.30/51.3	33.5/63.8	38.0/69.1	43.8/74.5
	IDeMe-Net - Def. Network	15.9/38.0	24.1/50.1	32.6/63.3	38.2/68.9	42.4/73.1
	IDeMe-Net - Gallery	17.5/39.4	24.2/51.4	33.5/63.7	38.7/70.3	44.4/74.5
	IDeMe-Net - Deform	15.7/37.8	22.7/49.8	31.9/62.6	38.0/68.7	43.5/73.8
	IDeMe-Net (1×1)	16.2/39.3	24.4/52.1	32.9/63.0	38.8/69.5	42.7/73.2
Patch Size	IDeMe-Net (5×5)	24.1 /51.7	30.3/61.2	39.6/70.4	42.4/73.2	44.3/74.6
	IDeMe-Net (7×7)	23.8/52.1	30.2/ 61.3	39.1/70.2	42.7 /73.1	44.5/74.7
	IDeMe-Net (pixel level)	17.3/39.0	23.8/51.2	34.1/63.7	38.5/70.2	43.9/74.5
Ours	IDeMe-Net	23.1/51.0	30.4 /60.9	39.3/70.4	42.7/73.4	45.0/75.1

Table 3. Top-1 / Top-5 accuracy (%) of the ablation study on novel classes of the ImageNet 1K Challenge dataset. We use ResNet-10 as the embedding sub-network. m indicates the number of training examples per class. Our full model achieves the best performance.

4. Deformation sub-network effectively exploits the relationship between the probe and gallery image patches

minilmageNet Dataset

K.

Mathad	miniImageNet (%)				
	1-shot	5-shot			
MAML [5]	48.70±1.84	63.11±0.92			
Meta-SGD [13]	50.47±1.87	64.03±0.94			
Matching Network [28]	43.56±0.84	55.31±0.73			
Prototypical Network [22]	49.42±0.78	68.20±0.66			
Relation Network [23]	57.02±0.92	71.07±0.69			
SNAIL [14]	55.71±0.99	68.88±0.92			
Delta-Encoder [21]	58.7	73.6			
Cos & Att. [8]	55.45±0.89	70.13 ±0.68			
Prototype Classifier	52.54±0.81	72.71±0.73			
IDeMe-Net (Ours)	59.14 ±0.86	74.63 ±0.74			
Table 4. Top-1 accuracy ((%) on novel	classes of the			
miniImageNet dataset. "±" indicates 95% confidence intervals					
over tasks.					

Conclusion

- Simple Approach
- Deformation Images being the major contribution.
- Extensive ablation study

- Extend this augmentation technique to more complex networks.
- Extend to KNN classifier

