Hide-and-Seek:

Forcing a Network to be Meticulous for Weakly-supervised Object and Action Localization

Krishna Kumar Singh and Yong Jae Lee University of California, Davis

Introduction

Why not use the fully-supervised approach?

[Felzenszwalb et al. PAMI 2010, Girshick et al. CVPR 2014, Girshick ICCV 2015, ...]

Requires expensive, error-prone bounding box annotations. Thus, it's not scalable

Weakly-supervised approach

• Visual classification and localization tasks

• Visual attribute localization

• Requires less detailed annotations compared to the fully-supervised approach

Weakly-supervised approach

• Supervision is provided at the image-level. It is scalable.

 Most weakly-supervised object localization approaches mine discriminative features or patches in the data that frequently appear in one class and rarely in other classes

Prior attempts to improve weak object localization

[Song et al. NIPS 2014]

Select multiple discriminative regions

Prior attempts to improve weak object localization

Transfer tracked objects from videos to images

Prior attempts to improve weak object localization

Global average pooling to encourage network to look at all relevant parts.

Hide-and-Seek

• If we randomly remove some patches from the image, the model must seek other relevant parts

• Hide-and-Seek only alters the input image

Hide-and-Seek

Randomly hidden patches

Weakly-supervised object localization

• Masking pixels or activations

• Action localization

Weakly-supervised object localization

Other network architectures have been designed for weakly-supervised object detection, still rely on a classification objective and thus to fail capture the full extent of an object

• Masking pixels or activations

• Action localization

Weakly-supervised object localization

• Masking pixels or activations

-In the paper, image regions are masked during training.

Action localization

Weakly-supervised object localization

• Masking pixels or activations

• Action localization

Weakly-supervised object localization

• Masking pixels or activations

Action localization

-Fully-supervised methods/Weak-supervised methods/approach in the paper

Approach

Hide-and-Seek (HaS) for:

- Weakly-supervised object localization in images
- Weakly-supervised temporal action localization in videos

Divide the training image into a grid with a patch size of S x S

Training image with label "dog"

Divide the training image into a grid with a patch size of S x S

Training image with label "dog"

Randomly hide patches

Epoch 1

Training image with label "dog"

During testing feed full images into trained network

Test image

Trained CNN

Class Activation Map (CAM) Predicted label: "dog"

Generating a Class Activation Map (CAM)

[Zhou et al. "Learning Deep Features for Discriminative Localization" CVPR 2016]

Setting the hidden pixel values

Inside visible patch

Inside hidden patch

Partially in hidden patch

Set the RGB value of a hidden pixel to be the mean RGB vector of the **entire** dataset:

$$\mathbf{v} \,=\, \mu \,=\, rac{1}{N_{pixels}} \sum_j \mathbf{x}_j$$

where **j** indexes all pixels in the entire training dataset and Npixel is the total number of pixels in the dataset. Hide-and-Seek (HaS) for:

- Weakly-supervised object localization in images
- Weakly-supervised temporal action localization in videos

time

Training video "high-jump"

Divide training video into contiguous frame segments of size S

Divide training video into contiguous frame segments of size S

Feed each hidden video to action classification CNN

Trained CNN

Training video "high-jump"

During testing feed full video into trained network

Other applications of HaS

- Weakly-supervised semantic segmentation
- Image classification
- Emotion recognition and age/gender estimation
- Person re-identification

[Singh, Krishna Kumar, et al. "Hide-and-Seek: A Data Augmentation Technique for Weakly-Supervised Localization and Beyond." arXiv preprint arXiv:1811.02545 (2018).]

Experiments and Results

Dataset

For object localization in images -

- ILSVRC 2016
- 1000 classes
- 1.2 million images with class labels for training

Dataset

For action localization in video -

- THUMOS 2014 validation data
- 1010 untrimmed videos, 101 classes
- Train over all classes
- Evaluate 20 classes with temporal annotations
- Each video can contain multiple instances of a class

Metrics

For Object localization -

1) Top-1 Loc:

Predicted class correct and bounding box > 50% IoU with ground truth

2) GT-known Loc:

Bounding box > 50% IoU with ground truth of known class

3) Top-1 Clas:

Classification accuracy

Metrics

For action localization -

- 1) Mean average precision (mAP) for evaluation
- 2) Prediction is correct if $IoU > \theta$
- 3) $\theta = \{ 0.1, 0.2, 0.3, 0.4, 0.5 \}$
- 4) Assume ground truth class label is known

Qualitative results of object localization

Qualitative results of action localization

Slide courtesy of Krishna Kumar Singh, UC Davis

Qualitative results of action localization

Slide courtesy of Krishna Kumar Singh, UC Davis

Results of object localization

Methods	GT-known Loc	Top-1 Loc	Top-1 Clas
AlexNet-GAP [61]	54.90^2	36.25	60.23
AlexNet-HaS-16	57.86	36.77	57.97
AlexNet-HaS-32	58.75	37.33	57.94
AlexNet-HaS-44	58.55	37.54	58.10
AlexNet-HaS-56	58.43	37.34	58.13
AlexNet-HaS-Mixed	58.68	37.65	58.68
GoogLeNet-GAP [61]	58.41 ²	43.60	71.95
GoogLeNet-HaS-16	59.83	44.62	70.49
GoogLeNet-HaS-32	60.29	45.21	70.70
GoogLeNet-HaS-44	60.11	44.75	70.34
GoogLeNet-HaS-56	59.93	44.78	70.37

Takeaway:

Randomly selecting the hidden patch size gives the best result.

Table 1. Localization accuracy on ILSVRC validation data with different patch sizes for hiding. Our Hide-and-Seek always performs better than AlexNet-GAP [61], which sees the full image.

Results of object localization

Methods	GT-known Loc	Top-1 Loc
Backprop on AlexNet [38]	-	34.83
AlexNet-GAP [61]	54.90	36.25
Ours	58.68	37.65
AlexNet-GAP-ensemble	56.91	38.58
Ours-ensemble	60.14	40.40
Backprop on GoogLeNet [38]	2	38.69
GoogLeNet-GAP [61]	58.41	43.60
Ours	60.29	45.21

Takeaway:

Averaging the CAM and class probabilities gives the best performance.

Table 2. Localization accuracy on ILSVRC val data compared to state-of-the-art. Our method outperforms all previous methods.

Methods	GT-known Loc	Top-1 Loc
Ours	58.68	37.65
AlexNet-dropout-trainonly	42.17	7.65
AlexNet-dropout-traintest	53.48	31.68

Table 3. Our approach outperforms Dropout [44] for localization.

Takeaway: HaS method much better at improving localization performance than dropout.

Methods	GT-known Loc	Top-1 Loc
AlexNet-GAP	54.90	36.25
AlexNet-Avg-HaS	58.43	37.34
AlexNet-GMP	50.40	32.52
AlexNet-Max-HaS	59.27	37.57

Table 4. Global average pooling (GAP) vs. global max pooling (GMP). Unlike [61], for Hide-and-Seek GMP still performs well for localization. For this experiment, we use patch size 56.

Takeaway: GMP performs better as HaS already trains network for better localization.

Methods	GT-known Loc	Top-1 Loc
AlexNet-GAP	54.90	36.25
AlexNet-HaS-conv1-5	57.36	36.91
AlexNet-HaS-conv1-11	58.33	37.38

Table 5. Applying Hide-and-Seek to the first conv layer. The improvement over [61] shows the generality of the idea.

Takeaway: HaS method intuition can be applied to even convolution layer filter outputs to give the same boost in performance.

Methods	GT-known Loc	Top-1 Loc
AlexNet-HaS-25%	57.49	37.77
AlexNet-HaS-33%	58.12	38.05
AlexNet-HaS-50%	58.43	37.34
AlexNet-HaS-66%	58.52	35.72
AlexNet-HaS-75%	58.28	34.21

Table 6. Varying the hiding probability. Higher probabilities lead to decrease in *Top-1 Loc* whereas lower probability leads to smaller *GT-known Loc*. For this experiment, we use patch size 56.

Takeaway: There is a trade off between localization and callsification accuracy wrt hiding probability.

Results of action localization

Methods	IOU thresh $= 0.1$	0.2	0.3	0.4	0.5
Video-full	34.23	25.68	17.72	11.00	6.11
Video-HaS	36.44	27.84	19.49	12.66	6.84

Table 7. Action localization accuracy on THUMOS validation data. Across all 5 IoU thresholds, our Video-HaS outperforms the full video baseline (Video-full).

Classification results for higher capacity network

	CIFAR-10		CIFAR-100			ImageNet	
20	ResNet44	ResNet56	ResNet110	ResNet44	ResNet56	ResNet110	ResNet50
Full	94.19	94.66	94.87	74.37	75.24	77.44	76.15
HaS	94.97	95.41	95.53	75.82	76.47	78.13	77.20

"Hide-and-Seek: A Data Augmentation Technique for Weakly-Supervised Localization and Beyond" (Singh, 2018). Using Hide-and-Seek as data augmentation improves performance of various vision tasks

Image classification +1.1% [He et al. 2015]

Face recognition tasks +1% (emotion, age, gender) [Khorrami et al. 2015]

Semantic segmentation +1.3% [Long et al. 2015]

Person Reidentification +1.6% [Zhong et al. 2018]

Slide courtesy of Krishna Kumar Singh, UC Davis

Our approach improves image classification when objects are partially-visible

Ground-truth: African Crocodile AlexNet-GAP: Trilobite Ours: African Crocodile

Ground-truth: Electric Guitar AlexNet-GAP: Banjo Ours: Electric Guitar

Ground-truth: Notebook AlexNet-GAP: Waffle Iron Ours: Notebook

Ground-truth: Ostrich AlexNet-GAP: Border Collie Ours: Ostrich

AlexNet-GAP [Zhou et al. CVPR 2016]

Merging spatially-close instances together

Localizing co-occurring context

Slide courtesy of Krishna Kumar Singh, UC Davis

Fail Cases

Our approach can fail by localizing co-occurring context

Slide courtesy of Krishna Kumar Singh, UC Davis

Strength and weakness

Strength -

- 1) The Hide and Seek method can be applied to any architecture
- 2) Better than Dropout for localization problem
- 3) Can be used as form of data augmentation to improve other tasks like segmentation, face recognition, etc.

Weakness -

- 1) The classification accuracy decreases for lower capacity networks
- 2) Spatially close instances and co-occurring contexts cause method to fail
- 3) Current method will not suffice for videos with multiple action labels

Future work

- 1) The patch size and hiding probabilities are hyper-parameters.
- 2) Dynamically learn patch size and hiding probability during training.

Thank You Any Questions?

Implementation - Object localization

Models	Conv layer	Train epochs	Learning rate	Batch Norm	Cam Threshold
AlexNet-GAP	512, (3x3), stride = 1, pad =1	55	0.01 → 0.0001	Yes	20%
GoogLeNet-GAP	1024, (3x3), stride = 1, pad =1	40	0.01 → 0.0001	Yes	30%

Implementation - Action localization

