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Image Grouping Problem
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Auto Image Generation
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Hierarchical Image Generation

Diagram from FineGAN paper, K. Singh et al., 2019




GAN: Generative Adversarial Network

- Generative Model: describes how data is generated, in terms of a
probabilistic model.
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Image credit: llya Verenich et al.




GAN: an implicit generative model

- Adversarial Model: Discriminator vs Generator
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FineGAN: Fine-Grained GAN

Approach:

- Hierarchically generating and stitching images together

- Disentangle factors / Parent and child latent code

(vector of latent space of feature)







Related work

InfoGAN™: Mutual Information between latent codes and images
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*InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets




Related work
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INfoGAN™: Mutual Information between latent code

I(c; G(z, ¢)) hard to maximize directly as it requires
access to the posterior of P(c|x) H
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Find a lower bound of it by defining an auxiliary distribution Q(c|x) to approximate P(c|x).

*InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets




Related work

INfoGAN™: Mutual Information between latent code
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Related work

Fine-grained category recognition
- involves classifying subordinate categories within entry-level categories

Visual object discovery and clustering
- unsupervised object discovery

Disentangled representation learning
- InfoGAN

GANs and Stagewise image generation
- Unconditional GANs







Big Picture
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Diagram from FineGAN paper, K. Singh et al., 2019




Architecture Overview

=== Stitching process =

D Generative modules
(| Discriminative modules

@ Elementwise multiplication
@ Elementwise addition

b - Background code

p - Parent code
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Diagram from FineGAN paper, K. Singh et al., 2019
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Architecture Overview
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Diagram from FineGAN paper, K. Singh et al., 2019
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Training Classifier
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Experimental setup and results

Dataset:
(1) CUB: 200 bird classes (11788 images).
(2) Stanford Dogs: 120 dog classes (training data 12000 images).
(3) Stanford Cars: 196 car classes (training data 8144 images).

Number of parents and children:
(1) CUB: N_p =20 N_c =200
(2) Stanford Dogs: N_p =12 N_c=120
(3) Stanford Cars: N_p = 20 N_c =196

Task:
(1) Fine-grained image generation
(2) Fine-grained object category discovery




Fine-grained image generation

Baselines:

(1) Simple-GAN: generates a final image in one shot without the parent and
background stages.

(2) InfoGAN: same as Simple-GAN but with additional L. inf. -

(3) LR-GAN: it also generates an image stagewise but it stage only consists
of foreground and background.

(4) StackGAN-v2: its unconditional version generates images at multiple
scales with L. ,4, at each scale.

Evaluation:
(1) Quantitative evaluation of image generation.
(2) Qualitative evaluation of image generation.



Quantitative evaluation of image generation

Metric:
(1) Inception Score (IS).
(2) Frechet Inception Distance (FID).

Results:
IS FID
Birds Dogs Cars Birds Dogs Cars
Simple-GAN  [31.85 4+ 0.17 6.75 £ 0.07 20.92 £0.14 | 16.69 261.85 33.35
InfoGAN [9] 4732 +£0.77 43.16 =042 28.62 + 0.44|13.20 2934 17.63
LR-GAN [50] |13.50 £0.20 10.22 +0.21 5.2540.05 |3491 5491 88.80
StackGANV2 [55] | 43.47 £0.74 37.29 £0.56 33.69 + 0.44 | 13.60 31.39 16.28
FineGAN (ours) |52.53 4+ 0.45 46.92 + 0.61 32.62 + 0.37 | 11.25 25.66 16.03

Table 1. Inception Score (higher is better) and FID (lower is bet-
ter). FineGAN consistently generates diverse and real images that
compare favorably to those of state-of-the-art baselines.




Quantitative evaluation of image generation

How sensitive is FineGAN to the number of parents:

Np=20 Np=10 Np=40 N,=5 Np=mixed
Inception Score (CUB) | 52.53 52.11 49.62 46.68 51.83

Table 2. Varying number of parent codes /V,,, with number of chil-

dren N, fixed to 200. FineGAN is robust to a wide range of N,,.

With variable number of children per parent (Np=mixed: 6 parents with 5 children, 3 parents with 20
children, and 11 parents with 10 children), IS remains high, which shows there is no need to have
the same number of children for each parent.




Qualitative evaluation of image generation

(1) Image generation process.

Back-
ground

Parent
Mask

Child
Mask

Stanford Cars

Figure 3. FineGAN’s stagewise image generation. Background stage generates a background which is retained over the child and parent
stages. Parent stage generates a hollow image with only the object’s shape, and child stage fills in the appearance to complete the image.

Stanford Dogs




Qualitative evaluation of image generation

(2) Disentanglement of factors of variation.

same child code
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Figure 4. Varying p vs. c vs. z. Every three rows correspond to the same parent code p and each row has a different child code c¢. For
the same parent, the object’s shape remains consistent while the appearance changes with different child codes. For the same child, the
appearance remains consistent. Each column has the same random vector z — we see that it controls the object’s pose and position.




Qualitative evaluation of image generation

(3) Disentanglement of parent vs. child.

same child code, varying parent code

same parent code, varying child code

Figure 5. Disentanglement of parent vs. child codes. Shape is
retained over the column, appearance is retained over the row.




Qualitative evaluation of image generation

(4) Disentanglement of background vs. foreground

(a) Fixed b, varying p and ¢ (b) Fixed p and ¢, varying b




Qualitative evaluation of image generation

(5) Comparison with InfoGAN.

£ as 2. FAK
Figure 6. InfoGAN results. Images in each group have same child
code. The birds are the same, but so are their backgrounds. This
strongly suggests InfoGAN takes background into consideration
when categorizing the images. In contrast, FineGAN’s generated
images (Fig. 4) for same ¢ show reasonable variety in background.




Fine-grained object category discovery

Baselines:
(1) JULE
(2) DEPICT
(3) JULE-ResNet-50
(4) DEPICT-Large

Metric:
(1) Normalized Mutual Information (NMI)
(2) Accuracy (of best mapping between cluster assignments and true
labels)




Fine-grained object category discovery

NMI Accuracy
Birds Dogs Cars | Birds Dogs Cars
JULE [51] 0204 0.142 0.232 | 0.045 0.043 0.046
JULE-ResNet-50 [51] | 0.203 0.148 0.237 | 0.044 0.044 0.050
DEPICT [15] 0.290 0.182 0.329 | 0.061 0.052 0.063
DEPICT-Large [15] | 0.297 0.183 0.330 | 0.061 0.054 0.062
Ours 0403 0.233 0.354 | 0.126 0.079 0.078

Table 3. Our approach outperforms existing clustering methods.




Strengths and weakness

Strengths:
(1) Accurately disentangle background, object shape, and object
appearance.

(2) Generate realistic and diverse images.
(3) Produce fine-grained clusters that are significantly more accurate than
those of state-of- the-art unsupervised clustering approaches.

Weakness:

(1) The number of children are hyperparameters that a user must set, which can be
difficult when the true number of categories is unknown (a problem common to
most unsupervised grouping methods).

(2) The latent modes of variation that FineGAN discovers may not necessarily
correspond to those defined/annotated by a human.

(3) we are far behind fully-supervised fine-grained recognition methods.



Applications:

(1)Style transfer
(2)Image clustering




Contributions

Introduces an unsupervised model that learns to hierarchically generate the background, shape, and
appearance of fine-grained object categories.

Learns disentangled representation to cluster real images for unsupervised fine-grained object category
discovery.




