Neural Illumination: Lighting Prediction for Indoor Environments

Authors: Shuran Song, Thomas Funkhouser Presenters: Clarice Roo, Shivang Soni, Nicolas Buxbaum

Goal:

Estimate a high dynamic range panoramic illumination map of the entire scene from an input image and chosen locale

Background

- Illumination map- a map that encodes the incident radiance arriving from every direction at the 3D location associated with the selected pixel
- Dynamic range is the ratio of the highest value to lowest value of the pixels in an image
- Low dynamic range (LDR)- dynamic range 1:255
- High dynamic range (HDR)- dynamic range 1:70,000

Motivations and Challenges

- Used to improve lighting in rendering
- Requires comprehensive understanding of the lighting environment
 - \circ 3D location of selected pixel
 - 3D scene geometry to fill in occlusions
 - Distribution of unobserved light sources
 - Missing high dynamic range information

Related Work- Capture Based Methods

Capture Based Methods for obtaining illumination of an environment

• Physical probe

Related Work- Optimization Based Methods

"Rendering synthetic objects into Legacy Photographs"

Related Work-Learning Based Methods

Problem Formulation

- 3 network method:
 - A geometry estimation network (via depth estimation) (this creates the warped image centered at chosen point)
 - An LDR completion map network (via an understanding of scene illumination and geometry)
 - LDR to HDR network (for improved accuracy)

Training Dataset Generation

Panoramic Datasets: illumination data only at **point of capture**

The authors leverage a RGB-D data sets (Matterport3D) to generate ground truth for any locale in the dataset!

Training Dataset Generation

- Matterport3D contains panoramas composed of many densely acquired images
- Illumination maps can be generated at any locale by warping and compositing nearby panoramas

Training Dataset Generation: Selective Locales

- An application is virtual object placement, so locales are chosen according to where a "real" virtual object might logically be placed
 - Densely sample 10 cm above surface mesh
 - Criteria: horizontal surface ($n < \cos(\pi/8)$, semantic label "floor" or "furniture", 10 cm object clearance, 50 cm minimum distance from previous locale

Training Dataset Generation: Forward Mapping

- For each locale, the distance to the closest surface in every direction is estimated
 - This is done using a forward mapping of every image in the panorama to the locale

Training Dataset Generation: Reverse Mapping

- Reconstruct illumination map by resampling input images via reverse mapping
 - Sample pixel values are blended proportionally to their distance from the locale

Training Dataset Generation: Advantages

1. Large variety of sampling sources gives varying illumination environments

- 1. Multiple illumination maps are generated for a single input image
 - Model learns spatial dependencies between pixel selections and generated illumination maps

Network Architecture

Geometry Estimation

- This module generates a pixel-wise prediction of geometry represented as a plane equation: aX + bY + cZ = d
- Well suited for representing the large planar surfaces of indoor environments compared with raw depth values

Geometry Estimation: U-Net Model

- Color image as input
- Surface normal and distance-to-origin plane distance as supervision
 - Calculated directly from Matterport3D depth images

Ground Truth

Model Output

Geometry Estimation: U-Net Model

- Surface normal predictions via a cosine loss
 - Angle between predicted and GT normals
- Plane offset predictions via an I1 loss
 - Difference between predicted and GT plane distance

Geometry Estimation: U-Net Model - PN Layer

- Output from the U-NET is passed to an additional PN layer that converts the normal and plane distances into pixel-wise prediction of 3D locations (via plane equation)
- This layer is fully differentiable and can be trained via an **I1 loss**
- Enforces consistency between the normal and plane distance outputs
 - Reduces noise seen when reconstructing 3D surfaces

$$\vec{P} = (x, y, z)$$

_

Camera intrinsics:

- f = F/p where F is focal length and p is real pixel size
- c is the optical center

$$\vec{P} = -\frac{p}{\vec{v}\cdot\vec{n}}\vec{v}$$
, where $\vec{v} = \left(\frac{x_i - c_x}{f_x}, \frac{y_i - c_y}{f_y}, 1\right)$

Geometry Estimation: Examples

Normal

Ground Truth

Model Output

Geometry-Aware Warping: Single Layer Module

- This maps the input image pixels to a spherical panoramic image, h(φ, θ), of the light arriving at l
- Pixels without a projected value are set to -1

Warped observation

Top: Ground Truth

Step 2: LDR Panorama Completion

- 2nd module of this system
- Fully Convolutional ResNet50
- Input: mapped observed pixels
- Outputs: dense pixel wise prediction of illumination

Distortion Aware Convolutional Filters

Input panoramic image

Ground-truth

Semantic reconstructio (Proposed)

Distortion-aware CNN (Proposed) on panoramic image

Standard CNN on panoramic image

Standard CNN on pre-rectified cube map

LDR Panorama Completion

- One of the biggest challenges: multi-model nature of the problem
- To address this: along with pixel wise supervision the module is trained with adversarial loss using a discriminator network

Step 3: LDR-to-HDR Estimation

• This module takes predicted LDR illumination as input and outputs a dense pixel-wise prediction of HDR illumination intensities.

LDR-to-HDR Estimation (Cont ..)

• The LDR-to-HDR module learns the mapping function for all pixels from the LDR space to the HDR space. The module is trained with supervision from: 1) a pixel-wise I₂ loss and 2) a diffuse convolutional loss L.

LDR-to-HDR Estimation (Cont ..)

1. Pixel-wise l₂ loss measures the visual error when re-lighting a perfectly specular surface.

$$L_{\ell 2} = \frac{1}{N} \sum_{i=1}^{N} (J(i) - J^*(i))$$

$$H(i) = \begin{cases} J(i) * 65536 * 8e^{-8}, & J(i) \le 3000\\ 2.4e^{-4} * 1.0002^{(J(i) * 65536 - 3000)}, & J(i) > 3000 \end{cases}$$

Notations:

J: log-scaled image of the final light intensity.

J*: log-scaled ground truth image of the final light intensity.

H: This is the output HDR illumination map.

i:Target local or specified pixel in an image

LDR-to-HDR Estimation (Cont ..)

2. Diffuse convolutional loss measures the visual error when re-lighting a perfectly diffuse surface.

$$L_d = \frac{1}{N} \sum_{i=1}^{N} (D(H(i)) - D(H^*(i)))$$

$$D(H,i) = \frac{1}{K_i} \sum_{\omega \in \Omega_i} H(\omega) s(\omega) (\omega \cdot \vec{n_i})$$

H: Expected HDR illumination map produced by LDR-to-HDR module.

H*: Ground truth HDR illumination map

D: Diffuse Convolution function.

 L_d : Diffuse convolution loss.

 Ω_i : hemisphere centered at pixel i.

 K_i : the sum of solid angles on Ω_i .

n[→] :the unit normal at pixel i s(ω): the solid angle for the pixel in the direction ω

LDR-to-HDR Estimation (Cont ..)

• Add diffuse convolution loss and pixel-wise I_2 loss to compute final loss:

 $L = \lambda_1 L_{\ell 2} + \lambda_2 L_d$

where,

$$\lambda_1 = 0.1$$
 and $\lambda_2 = 0.05$.

Evaluation:

• Matterport3D dataset of HDR RGB-D is leveraged to generate the training data for the arbitrary locale.

• Training and testing is done by using same train/test split provided in Matterport3D dataset.

• The experiment makes quantitative and qualitative comparisons with the models proposed in the prior work.

Evaluation Metrics:

• **Pixel-wise I₂ distance error:** Sum of all the pixel-wise I₂ distances between the predicted H₁ and the ground truth H₁^{*} illumination maps.

• **Pixel-wise diffuse convolution error:** Sum of all the pixel-wise I_2 distance between $D(H_1)$ and $D(H_1^*)$.

Method	$\ell 2(\log)$	$\ell 2$	diffuse
Gardner et al. [7]	0.375	0.977	1.706
Im2Im network	0.229	0.369	0.927
Nearest Neighbour	0.296	0.647	1.679
Ours	0.202	0.280	0.772

Table 1. Comparing the quantitative performance of our method to that of Gardner *et al*. [7] and a nearest neighbour retrieval method.

Modularization v.s. Additional supervision:

	$\ell 2(\log)$	$\ell 2$	diffuse
without	0.213	0.319	0.856
with (ours)	0.202	0.280	0.772

Table 2. Effects of modularization.

Comparisons to variants:

LDR + D ---- HDR (first two modules are omitted)

HDR(wrapped) + D \longrightarrow HDR (last modules are omitted)

Method	$\ell 2(\log)$	$\ell 2$	diffuse
LDR→HDR	0.202	0.280	0.772
$LDR+D \rightarrow HDR$	0.188	0.269	0.761
HDR+D \rightarrow HDR	0.131	0.212	0.619

Table 3. Comparisons to variants with oracles.

Effect of different losses:

12 only

l2+gan

12+gan+df

Ground truth

loss	$\ell 2(\log)$	$\ell 2$	diffuse
12	0.116	0.235	0.691
l2+gan	0.224	0.275	0.713
12+gan+df	0.131	0.212	0.619

Table 4. Effects of different losses.

Strengths and Weaknesses

Strengths:

- This model is separated into 3 separate modules which increases performance (3 more doable subtasks rather than one larger problem)
- Produces richer/sharper detailed estimations

Weaknesses:

• Produces plausible illumination maps rather than accurate ones when no lights are observed directly in the input

Extensions

- Future work:
 - Include explicit modeling of surface material and reflective properties
 - explore alternative 3D geometric representations that facilitate out-of-view illumination estimation through whole scene understanding.

Thank You For Listening!