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Goal: 

Estimate a high dynamic 

range panoramic 

illumination map of the 

entire scene from an 

input image and chosen 

locale 



Background 

● Illumination map- a map that  encodes the incident radiance arriving from 

every direction at the 3D location associated with the selected pixel

● Dynamic range is the ratio of the highest value to lowest value of the pixels in 

an image 

● Low dynamic range (LDR)- dynamic range 1:255 

● High dynamic range (HDR)- dynamic range 1:70,000 



Motivations and Challenges 
● Used to improve lighting in 

rendering

● Requires comprehensive 

understanding of the lighting 

environment 
○ 3D location of selected pixel

○ 3D scene geometry to fill in 

occlusions 

○ Distribution of unobserved light 

sources 

○ Missing high dynamic range 

information



Related Work- Capture Based Methods 

Capture Based Methods for 

obtaining illumination of an 

environment

● Physical probe

https://www.pauldebevec.com/Probes/

https://www.pauldebevec.com/Probes/


Related Work- Optimization Based Methods 

“Rendering synthetic objects into Legacy 

Photographs” 



Related Work-

Learning Based 

Methods 

Ground truth                              Gardner



Problem Formulation 

● 3 network method: 
○ A geometry estimation network (via depth estimation) (this creates the warped image centered 

at chosen point)

○ An LDR completion map network (via an understanding of scene illumination and geometry)

○ LDR to HDR network (for improved accuracy) 



Training Dataset Generation 

The authors leverage a RGB-D data sets (Matterport3D) to 

generate ground truth for any locale in the dataset!

Physical Probes
Costly and time 

consuming 

Panoramic Datasets: 

illumination data only 

at point of capture

Limits data 

quantity 



Training Dataset Generation 

● Matterport3D contains panoramas composed of many densely acquired 

images 

● Illumination maps can be generated at any locale by warping and compositing 

nearby panoramas 



Training Dataset Generation: Selective Locales  

● An application is virtual object placement, so locales are chosen according to 

where a “real” virtual object might logically be placed
○ Densely sample 10 cm above surface mesh

○ Criteria: horizontal surface (n<cos(π/8), semantic label “floor” or “furniture”, 10 cm object 

clearance, 50 cm minimum distance from previous locale 



Training Dataset Generation: Forward Mapping 

● For each locale, the distance to the closest surface in every direction is 

estimated
○ This is done using a forward mapping of every image in the panorama to the locale 



Training Dataset Generation: Reverse Mapping 

● Reconstruct illumination map by resampling input images via reverse 

mapping 
○ Sample pixel values are blended proportionally to their distance from the locale 



Training Dataset Generation: Advantages

1. Large variety of sampling sources gives 

varying illumination environments

1. Multiple illumination maps are generated for a 

single input image

a. Model learns spatial dependencies 

between pixel selections and generated 

illumination maps 



Network Architecture 



Geometry Estimation 

● This module generates a pixel-wise prediction of geometry represented as a 

plane equation: aX + bY + cZ = d

● Well suited for representing the large planar surfaces of indoor environments 

compared with raw depth values 



Geometry Estimation: U-Net Model  

● Color image as input 

● Surface normal and distance-to-origin plane distance as supervision 
○ Calculated directly from Matterport3D depth images 

Ground Truth

Model Output



Geometry Estimation: U-Net Model  

● Surface normal predictions via a cosine loss
○ Angle between predicted and GT normals

● Plane offset predictions via an l1 loss
○ Difference between predicted and GT plane distance 



Geometry Estimation: U-Net Model - PN Layer 

● Output from the U-NET is passed to an additional PN layer that converts the 

normal and plane distances into pixel-wise prediction of 3D locations (via 

plane equation)

● This layer is fully differentiable and can be trained via an l1 loss

● Enforces consistency between the normal and plane distance outputs
○ Reduces noise seen when reconstructing 3D surfaces

Camera intrinsics: 

- f = F/p where F is focal 

length and p is real pixel 

size 

- c is the optical center 



Geometry Estimation: Examples

Ground Truth

Model Output

Normal Plane Distance



Geometry-Aware Warping: Single Layer Module 

● This maps the input image 

pixels to a spherical 

panoramic image, h(φ, θ), of 

the light arriving at l

● Pixels without a projected 

value are set to -1 

Top: Ground Truth

l, the chosen 

point



Step 2: LDR Panorama Completion

● 2nd module of this system 

● Fully Convolutional ResNet50

● Input: mapped observed pixels 

● Outputs: dense pixel wise prediction of illumination 



Distortion 

Aware 

Convolutional 

Filters 



LDR Panorama Completion

● One of the biggest challenges: multi-model nature of the problem

● To address this: along with pixel wise supervision the module is trained with 

adversarial loss using a discriminator network 



Step 3: LDR-to-HDR Estimation

● This module takes  predicted LDR illumination as input and outputs a dense pixel-wise 

prediction of HDR illumination intensities.



LDR-to-HDR Estimation (Cont ..)

● The LDR-to-HDR module learns the mapping function for all pixels from the LDR space 

to the HDR space. The module is trained with supervision from: 1) a pixel-wise l2 loss 

and 2) a diffuse convolutional loss L. 

Specular Surface Diffuse Surface



LDR-to-HDR Estimation (Cont .. )

1. Pixel-wise l2 loss measures the visual error when re-lighting a perfectly 

specular surface.
Notations:

J: log-scaled image of the final light intensity.

J*: log-scaled ground truth image of the final 

light intensity.

H: This is the output HDR illumination map.

i:Target local or specified pixel in an image



LDR-to-HDR Estimation (Cont .. )

2. Diffuse convolutional loss measures the visual error when re-lighting a perfectly 

diffuse surface. H: Expected HDR illumination map produced 

by LDR-to-HDR module.

H*: Ground truth HDR illumination map

D: Diffuse Convolution function.

Ld: Diffuse convolution loss.

Ωi: hemisphere centered at pixel i.

Ki:  the sum of solid angles on Ωi.

n➝ :the unit normal at pixel i

s(⍵): the solid angle for the pixel in the 

direction ω



LDR-to-HDR Estimation (Cont .. )

● Add diffuse convolution loss and pixel-wise l2 loss to compute final loss:

where, 



Evaluation:

● Matterport3D dataset of HDR RGB-D is leveraged to generate the training 

data for the arbitrary locale.

● Training and testing is done by using same train/test split provided in 

Matterport3D dataset.

● The experiment makes quantitative and qualitative comparisons with the 

models proposed in the prior work.



Comparisons to state-of-the-art



Comparisons to state-of-the-art



Comparisons to state-of-the-art



Evaluation Metrics:

● Pixel-wise l2 distance error: Sum of all the pixel-wise l2 distances between          

the predicted Hl and the ground truth Hl
* illumination maps.

● Pixel-wise diffuse convolution error: Sum of all the pixel-wise  l2 distance 

between D(Hl ) and D(Hl
*). 



Comparisons to state-of-the-art



Modularization v.s. Additional supervision:



Comparisons to variants:

LDR + D            HDR (first two modules are omitted)

HDR(wrapped) + D            HDR (last modules are omitted)



Effect of different losses:



Strengths: 

● This model is separated into 3 separate modules which increases 

performance (3 more doable subtasks rather than one larger problem) 

● Produces richer/sharper detailed estimations

Weaknesses:

● Produces plausible illumination maps rather than accurate ones when no 

lights are observed directly in the input

Strengths and Weaknesses 



Extensions 

● Future work: 
○ Include explicit modeling of surface material and reflective properties

○ explore alternative 3D geometric representations that facilitate out-of-view illumination 

estimation through whole scene understanding.



Thank You For Listening! 


