YOLACT

Real-time Instance Segmentation

Daniel Bolya, Chong Zhou, Fanyi Xiao, Yong Jae Lee

Outline

- Background
- Instance Segmentation
- Real-time instance segmentation and its complexity
- Introduction to YOLACT
- Architecture of YOLACT
- Improvements
- Results
- Summary

Types of Visual Recognition Tasks

- 1. Classification Task
- 2. Object Detection Task
- 3. Segmentation Task

What makes it complex?

- The task is to identify the different classes of instances in the image as well as the different instances belonging to each class.
- Way more complex than segmentation task which only needs to identify what pixels belong to what classes.

Semantic Segmentation

Instance Segmentation

Instance Segmentation

Classify every pixel in the image to a class such that each pixel is assigned to an instance.

Instance Segmentation in Real-time

- Steady improvement in field of instance segmentation over the years.
- Previous models aim for accuracy over speed.
- No practically usable real time model until YOLACT.

2-Stage Models

Fig. Working of Mask R-CNN

YOLACT

• Simple, fully-convolutional model

• 29.8 *mAP* accuracy with 33 *fps* on MS COCO dataset.

- Breaks down instance segmentation into parallel subtasks for fast performance
 - Generating a set of prototype masks
 - Predicting per-instance mask coefficients

Prototype Masks

- Think of prototypes as parts of a whole mask.
- Each prototype has a unique behavior.
 - It may localize instances.
 - It may find edges and contours.
 - It may do a combination of these tasks.

Why is YOLACT faster ?

- Single Stage Model

- Prototype Masks and Mask Coefficients are calculated parallely and independently.

- Other methods have an explicit localization step (Ex : ROIAlign in Mask R-CNN)

- YOLACT learns about localizing instances by itself and bypasses the explicit localization step.

Backbone Detector

Backbone Detector

- We can use any type of backbone detector

- Here we have used ResNet-101 with FPN (Feature Pyramid Network) as backbone

- Base size image is 550 x 550

Prototype Generation	
	Mask Assembly
Mask Coefficients	

Step 1 : Prototype Generation

- Also known as Pronet
- It is a Fully Convolutional Network
- Last layer produces k prototypes
- No explicit loss
- We leave the prototypes output being unbounded

Step 1 : Mask Coefficients (In Parallel)

- Produces c + 4 + k coefficients

- Use tanh on k mask coefficients

Step 2 : Mask Assembly

- M => Mask
- P => Prototype (h x w x k)
- C => Mask Coefficients (n x k)
- Sigmoid

Fig: Sigmoid Function

$$M = \sigma(PC^T)$$

Losses

Three types of losses:

- Classification Loss $L_{conf}(x,c) = -\sum_{i \in Pos}^{N} x_{ij}^{p} log(\hat{c}_{i}^{p}) - \sum_{i \in Neg} log(\hat{c}_{i}^{0}) \text{ where } \hat{c}_{i}^{p} = \frac{\exp(c_{i}^{p})}{\sum_{p} \exp(c_{i}^{p})}$

Confidence Loss

- Box Regression Loss

1

$$L_{1;smooth} = \begin{cases} |x| & \text{if } |x| > \alpha;\\ \frac{1}{|\alpha|}x^2 & \text{if } |x| \le \alpha \end{cases}$$

$$L_{loc}(x,l,g) = \sum_{i \in Pos}^{N} \sum_{m \in \{cx,cy,w,h\}} x_{ij}^{k} \operatorname{smooth}_{L1}(l_{i}^{m} - \hat{g}_{j}^{m})$$
$$\hat{g}_{j}^{cx} = (g_{j}^{cx} - d_{i}^{cx})/d_{i}^{w} \qquad \hat{g}_{j}^{cy} = (g_{j}^{cy} - d_{i}^{cy})/d_{i}^{h}$$
$$\hat{g}_{j}^{w} = \log\left(\frac{g_{j}^{w}}{d_{i}^{w}}\right) \qquad \hat{g}_{j}^{h} = \log\left(\frac{g_{j}^{h}}{d_{i}^{h}}\right)$$

Localization Loss

Losses (Continue...)

- Mask Loss - Pixel-wise Binary Cross Entropy

Mgt: Lmask = BCE(M, Mgt).

Cropping Masks

During Evaluation :

- We crop final masks with the predicted bounding box

During Training:

- We crop with the ground truth bounding box and divide Lmask by the ground truth bounding box area

Improvements

• Increase Speed with little effect on performance

• Increase Performance with no speed penalty

NMS (Non Maximum Suppression)

- Most Object Detectors uses traditional NMS or Sequential NMS
 - Makes sure each object is detected only once
 - Sort the detected boxes in descending order by Confidence
 - Discard values less than a certain threshold
 - Discard the values greater than threshold IoU values

- Fast-NMS
 - A new version of NMS
 - Decides to either discard or keep parallely
 - Allows already removed detections to suppress other detections

Fast-NMS

- First we compute a pairwise IoU matrix (X) using,
 - o c*n*n
 - c = classes
 - n = top n detections sorted in descending order

- Second, remove detections for
 - Confidence values less than a threshold 't'
 - IoU values greater than a threshold 't'

Fast-NMS contd..

- Second step implemented using:
 - Setting lower triangle and diagonal of X to be 0.

 $X_{kij} = 0 \qquad \forall k, j, i \ge j$

- Where
 - X = pairwise IoU matrix
- Taking the column-wise max
 - Where K = Matrix of maximum IoU values

$$K_{kj} = \max_{i}(X_{kij}) \qquad \forall k, j$$

• Detections to keep given by threshold matrix t (K<t)

Semantic Segmentation Loss

• Increases performance with no speed penalty

• Authors attach a 1x1 conv layer with c output channels to the largest feature map P3 in the backbone

• Use of a sigmoid and c channels instead of a softmax

• Training with this loss resulted in +0.4 mAP boost

Results

• Results were reported on MS COCO instance segmentation task

• Training was done on train2017

• Evaluation on val2017 and test-dev

Method	Backbone	FPS	Time	AP	AP ₅₀	AP ₇₅	AP_S	AP_M	AP_L
PA-Net [27]	R-50-FPN	4.7	212.8	36.6	58.0	39.3	16.3	38.1	53.1
RetinaMask [12]	R-101-FPN	6.0	166.7	34.7	55.4	36.9	14.3	36.7	50.5
FCIS [22]	R-101-C5	6.6	151.5	29.5	51.5	30.2	8.0	31.0	49.7
Mask R-CNN [16]	R-101-FPN	8.6	116.3	35.7	58.0	37.8	15.5	38.1	52.4
MS R-CNN [18]	R-101-FPN	8.6	116.3	38.3	58.8	41.5	17.8	40.4	54.4
YOLACT-550	R-101-FPN	33.0	30.3	29.8	48.5	31.2	9.9	31.3	47.7
YOLACT-400	R-101-FPN	44.0	22.7	24.9	42.0	25.4	5.0	25.3	45.0
YOLACT-550	R-50-FPN	42.5	23.5	28.2	46.6	29.2	9.2	29.3	44.8
YOLACT-550	D-53-FPN	40.0	25.0	28.7	46.8	30.0	9.5	29.6	45.5
VOLACT 700	R-101-FPN	236	42 4	31.2	50.6	328	12.1	33 3	47 1

Mask Quality

Trade-off

- Lowering of image size :
 - Decreases the performance
 - Increases the speed

- Increasing the image size:
 - Increases the performance
 - Decreases the speed

• Paper suggests using ResNet- 50 or DarkNet-53 to increase speeds.

Limitations

- Localization Failure
 - Too many objects cause the network to fail to localize each object
 - Network outputs something closer to the foreground mask

• Leakage

- Network does not suppress noise outside boundary box
- Inaccuracy of boundary box causes leakage
- Also happen when two instances are away from each other

Summing it up

Strengths

- Fast, Real-time model.
- Achieves real-time performance while having comparable accuracies.
- Produces high quality masks.
- Shows that the model can learn about inherent behavior without being aimed at doing so.

Weaknesses

- Performance vs Speed Tradeoff.
- Might fail to segment images with too many instances in one spot.
- Leakage issue leading to extra noise.

Questions?