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Types of Visual Recognition Tasks

1. Classification Task
2. Object Detection Task
3. Segmentation Task
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What makes it complex?

e The task is to identify the different classes of instances in the image as well as the different
instances belonging to each class.

e Way more complex than segmentation task which only needs to identify what pixels belong to
what classes.
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Semantic Segmentation Instance Segmentation



Instance
Segmentation

Classify every pixel in the image
to a class such that each pixel is
assigned to an instance.




Instance Segmentation in Real-time

e Steady improvement in field of instance segmentation over the years.
e Previous models aim for accuracy over speed.
e No practically usable real time model until YOLACT.



2-Stage Models

Stage 2
Stage 1 Calculating Segmentation

Object Proposal Mask, Class Confidence and
Bounding Box offset

Fig. Working of Mask R-CNN



YOLACT

e Simple, fully-convolutional model
e 29.8 mAP accuracy with 33 fps on MS COCO dataset.

e Breaks down instance segmentation into parallel subtasks for fast performance
o  Generating a set of prototype masks
o  Predicting per-instance mask coefficients



Pratotype Masks

e Think of prototypes as parts of a whole mask.

e Each prototype has a unique behavior.
o It may localize instances.
o It may find edges and contours.
o It may do a combination of these tasks.



Why is YOLACT faster /

Single Stage Model

Prototype Masks and Mask Coefficients are calculated parallely and independently.

- Other methods have an explicit localization step (Ex : ROIAlign in Mask R-CNN)

YOLACT learns about localizing instances by itself and bypasses the explicit localization step.



Backbone Detector




Backbone Detector

- We can use any type of backbone detector

Here we have used ResNet-101 with FPN (Feature Pyramid Network) as
backbone

Base size image is 550 x 550



Prototype Generation

Mask Assembly

Mask Coefficients




Step 1 : Prototype Generation

- ReLU
- Also known as Pronet | A =maa(, -

It is a Fully Convolutional Network

Last layer produces k prototypes
No explicit loss

- We leave the prototypes output being unbounded
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Step 1 : Mask Coefficients (In Parallel)

- Produces c + 4 + k coefficients




Step ¢ - Mask Assembly

M => Mask e 1
- P => Prototype (h x w x k) P /'
- C=> Mask Coefficients (n x k)
- Sigmoid J

—————————————

Fig: Sigmoid Function

M = o(PCT)



L 0SSes

Three types of losses:
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Losses (Continue...)

- Mask Loss - Pixel-wise Binary Cross Entropy

Mgt: Lmask = BCE(M, Mgt).



Cropping Masks

During Evaluation :

- We crop final masks with the predicted bounding box

During Training:

- We crop with the ground truth bounding box and divide Lmask by the
ground truth bounding box area



[mprovements

e Increase Speed with little effect on performance

e Increase Performance with no speed penalty



NMS (Non Maximum Suppression)

e Most Object Detectors uses traditional NMS or Sequential NMS

o Makes sure each object is detected only once
o Sort the detected boxes in descending order by Confidence
o Discard values less than a certain threshold
o Discard the values greater than threshold loU values
e Fast-NMS

o Anew version of NMS
o Decides to either discard or keep parallely
o Allows already removed detections to suppress other detections



Fast-NMS

e First we compute a pairwise loU matrix (X) using,
o c*n*n
o c=classes
o n=top n detections sorted in descending order

e Second, remove detections for
o Confidence values less than a threshold ‘t’
o loU values greater than a threshold ‘t’



Fast-NMS contd..

e Second step implemented using:
o Setting lower triangle and diagonal of X to be O.

JX—}”‘J' =0 Vk,_‘j, ) Z ]

m  Where
e X = pairwise loU matrix
o Taking the column-wise max
m  Where K = Matrix of maximum loU values

Kij = max(Xkgj) Vk,j

e Detections to keep given by threshold matrix t (K<t)



Semantic Segmentation Loss

e Increases performance with no speed penalty

e Authors attach a 1x1 conv layer with ¢ output channels to the largest
feature map P3 in the backbone

e Use of a sigmoid and c channels instead of a softmax

e Training with this loss resulted in +0.4 mAP boost



Results

e Results were reported on MS COCO instance segmentation task
e Training was done on train2017

e FEvaluation on val2017 and test-dev



Method Backbone FPS  Time AP  AP59 APy APs APy APL
PA-Net [27] R-50-FPN 4.7 2128 36,6 58.0 39.3 16.3 38.1 33:1
RetinaMask [ 1] R-101-FPN 6.0 166.7 347 554 36.9 14.3 36.7 50.5
FCIS [22] R-101-C5 6.6 151.5 29.5 515 30.2 8.0 310 4979
Mask R-CNN [16] R-101-FPN 8.6 116.3 357  58.0 37.8 155 38.1 524
MS R-CNN [1§] R-101-FPN 8.6 116.3 383 58.8 41.5 17.8 40.4 54.4
YOLACT-550 R-101-FPN 33.0 303 20.8 485 3.7 9.9 313 47.7
YOLACT-400 R-101-FPN 44.0 22.7 249 420 254 5.0 253 45.0
YOLACT-550 R-50-FPN 425 235 282  46.6 29.2 9.2 29.3 44.8
YOLACT-550 D-53-FPN 40.0  25.0 287  46.8 30.0 9.5 29.6 45.5
YOLACT-700 R-101-FPN 236 424 312  50.6 32.8 12.1 33.3 47.1




Mask Quality




Trade-off

e Lowering of image size :
o Decreases the performance
o Increases the speed

e Increasing the image size:

o Increases the performance
o Decreases the speed

e Paper suggests using ResNet- 50 or DarkNet-53 to increase speeds.



Limitations

e Localization Failure
o Too many objects cause the network to fail to localize each object
o Network outputs something closer to the foreground mask

e Leakage
o Network does not suppress noise outside boundary box
o Inaccuracy of boundary box causes leakage
o Also happen when two instances are away from each other



Summing it up
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Strengths

Fast, Real-time model.

Achieves real-time performance while having comparable accuracies.
Produces high quality masks.

Shows that the model can learn about inherent behavior without being

aimed at doing so.



Weaknesses

e Performance vs Speed Tradeoff.
e Might fail to segment images with too many instances in one spot.
e Leakage issue leading to extra noise.



Questions?



