BubbleNets: Learning to Select the Guidance Frame in Video Object Segmentation by Deep Sorting Frames

 $\bullet \bullet \bullet$

Roger Lee, Yu-Si Hsu, Yun-Hsin Kuo

Video Object Segmentation (VOS)

A task to learn where the objects are in the video in pixel level

- Unsupervised Video Object Segmentation
- Semi-supervised Video Object Segmentation
- Supervised Video Object Segmentation

Semi-Supervised Video Object Segmentation

Takes only one frame with annotation from the video, and segment the objects for the rest of the video.

One Shot Video Object Segmentation (OSVOS)

□ OSVOS is a semi-supervised video object segmentation model

- Pre-train a model to classify each pixel to be either foreground or background
- □ Fine-tune the model with the first frame (ground truth annotation)
- Output the object segmentation for the rest of frames

Uses no temporal information

i.e. the order of frames fed into the network does not influence the outcome

The Order Doesn't Matter!

- Therefore we are allowed to pick any frame being used to fine-tune the model
- OSVOS fine-tuned the model with the first frame
 - □ Is first frame the best choice to fine-tune the model?

Contributions

□ The very first paper that discusses about frame selection for semi-supervised VOS.

□ Motivated by the high cost of densely-annotated user segmentations

Demonstrates BubbleNets to improve VOS performance

BubbleNets

- Segmentation performance **varies** when selecting an alternative frame.
- Select one single frame for user annotation, from an **untouched** video.
- Improve the performance of <u>semi-supervised VOS</u>. OSVOS, specifically.

BubbleNets: I/O selection

To increase training examples. Because labeled video data are expensive.

m training videos. *n* labeled frames per video.

Training examples	т	m* n	$m \times \binom{n}{2} \approx \frac{mn^2}{2}$
Input	entire video	individual frame	two compared frames
Output	$\arg \max_i y_i$	predicted performance	predicted relative performance

BubbleNets: Input

k reference frames as additional input. Provide some video context.

INPUT: 2 compared frames (i, j) + k reference frames

Compromise between video-wide awareness and network complexity

Training examples:
$$m \times {n \choose 2} \approx \frac{mn^2}{2} \longrightarrow m \times {n \choose k+2} \approx \frac{mn^{(k+2)}}{k+2}$$

BubbleNets: Output & Loss function

set of reference frames

OUTPUT: predicted **relative** performance, $f(x_i, x_j, X_{ref.}, \mathbf{W})$

2 compared frames

$$\mathcal{L}(\mathbf{W}) := |(y_i - y_j) - f(x_i, x_j, X_{\text{ref.}}, \mathbf{W})|$$

BubbleNets: Basic sorting framework

BubbleNets Selected Frame 30

use the frame with greatest predicted performance for user annotation

Source: https://youtu.be/XBEMuFVC2lg

BubbleNets: Basic sorting framework

Seems to be deterministic, and <u>only one pass</u> is needed.

But BubbleNets is **stochastic**.

Different set of reference frames results in different relative performance.

How to increase BubbleNets' consistency?

use the frame with greatest predicted performance for user annotation

BubbleNets: Consistency

(1) Bubble sort feature: redundancy, thus sub-optimal

n-forward passes for an *n*-frame video.

Effective given BN's stochastic nature

(2) Batch each prediction over multiple sets of reference frames.

Summation over entire batch. Reduce variability.

Increasing batch size: [1] more easily to hit local minimum [2] longer execution time

– Nomarlized Frame Indices:

$$I_i = \frac{i}{n}.$$

- Leaky ReLU as activation function
- 20% dropout in last three layers
- Output is a **scalar**

BubbleNets: Implementation

- Training dataset: DAVIS 2017
 - Complete set of fully-annotated video frames
 - \circ $\,$ i.e., every frame has ground truth
- Performance indicator: Region similarity + Contour accuracy
 - \circ Video-wide mean performance by selecting <u>frame *i*</u> for annotation (ground truth performance)

BubbleNets: Training labels

- Pre-calculation for each frame's ground truth performance
 - We will know the best single frame, as well as the worst one.
 - Simle frame selection strategies (First, Middle, Last)
 - Decrease training time

Region Similarity J (IoU, Jaccard Idx)

 $\mathcal{J} = \frac{M \cap G}{M \cup G}$ M : foreground mask (prediction)

G : ground truth

Intersection

Union: $A \cup B$ ń

$$F_1 = \left(rac{2}{ ext{recall}^{-1} + ext{precision}^{-1}}
ight) = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

$$Precision = \frac{TP}{TP + FP} \qquad Recall = \frac{TP}{TP + FN}$$

BubbleNets: Configurations

5 configurations are implemented to test efficacy.

ResNet **Performance Prediction** Network Input Preprocessing Layers Video ResNet 2048 Frame i 50 Network Output ResNet Fully Video 64 <u>52</u> <u>f</u> 2048 FC Connected 50 Frame *i* 128 256 Video ResNet Reference 2048 50 Frames Input Frame Indices

BN_o : Standard BubbleNets

BN_{NIFI} : No Input Frame Indices

BN_{NRF} : No Reference Frames

Focus on Input Selection

BubbleNets: Configurations

BN₀ : Standard BubbleNets

$$\mathcal{L}(\mathbf{W}) := |(y_i - y_j) - f(x_i, x_j, X_{\text{ref.}}, \mathbf{W})|$$

BN_{LSP} : Single Frame Preference

$$\mathcal{L}_{SP}(\mathbf{W}) := |y_i - f(x_i, X_{\text{ref.}}, \mathbf{W})|$$

BN_{LF} : Bias toward Middle Frame

$$\mathcal{L}_{\rm F}(\mathbf{W}) := |(y_i - y_j) - (d_i - d_j) - f(x_i, x_j, X_{\rm ref.}, \mathbf{W})|$$

$$d_i = \lambda |I_i - I_{\rm MF}| \qquad I_i = \frac{i}{n}. \qquad \lambda = 0.5, I_{\rm MF} = 0.5$$

Focus on Loss function Design

Experimental setup

- Primary Dataset: DAVIS 2017
- Best and worst possible frame selection upper and lower bound
- Simple frame selection: First, Middle, Last, Random
- Determine Batch size:

Table 3. Ablation Study on DAVIS 2017 Val. Set: Study of BN input batch size for bubble sort comparisons and end performance.

Batch	Per	formance ($\mathcal J$ -	$+\mathcal{F})$	Mean Video
Size	BN ₀	BN _{NIFI}	$BN_{\mathcal{L}F}$	Sort Time
1	124.1	122.9	120.5	3.88 s
3	125.2	122.0	121.6	4.83 s
5	125.2	123.8	121.7	5.32 s
10	125.2	122.0	120.3	6.52 s
20	123.6	123.4	120.7	9.34 s

Annotation	5	Segmentation	Performance (\mathcal{J} -	$+\mathcal{F})$	Annotation	5	Segmentation	Performance (\mathcal{J} -	$+\mathcal{F})$
Frame Selection	Mean	Median	Range	Coef. of Variation	Frame Selection	Mean	Median	Range	Coef. of Variation
	2) X	DAVIS 2017	Val.	20. 22	8 <u></u>		DAVIS 2016	Val.	
Best	141.2	143.2	14.9–194.9	0.26	Best	171.2	176.3	130.6-194.9	0.11
BN_0	125.2	128.9	7.6-194.2	0.34	BN_0	159.8	168.5	72.6-194.5	0.18
BN_{NIFI}	123.8	129.9	8.7–194.2	0.35	BN_{NIFI}	157.3	165.7	72.6-194.5	0.18
$BN_{\mathcal{L}F}$	121.7	128.0	7.6-194.3	0.38	$BN_{\mathcal{L}F}$	155.6	170.5	72.6-193.8	0.21
Middle	119.2	124.0	7.6–193.6	0.41	Middle	155.2	169.5	77.1-193.8	0.21
Random	116.5	119.7	1.6-193.2	0.38	First	152.8	153.4	115.2–191.7	0.15
First	113.3	117.2	3.5-192.5	0.39	Random	147.5	157.3	83.1-194.5	0.25
Last	104.7	110.3	4.4-190.1	0.42	Last	147.5	153.0	72.0-189.6	0.23
Worst	86.3	88.2	1.6-188.9	0.56	Worst	127.7	141.3	68.3-188.9	0.31

• BN0's use of normalized frame indices is more benificial

Annotation	tation Segmentation Performance $(\mathcal{J} + \mathcal{F})$			Annotation	Segmentation Performance $(\mathcal{J} + \mathcal{F})$			$+\mathcal{F}$)	
Frame Selection	Mean	Median	Range	Coef. of Variation	Frame Selection	Mean	Median	Range	Coef. of Variation
	9 A	DAVIS 2017	Val.	20. 73	22		DAVIS 2016	Val.	29
Best	141.2	143.2	14.9–194.9	0.26	Best	171.2	176.3	130.6-194.9	0.11
BN_0	125.2	128.9	7.6-194.2	0.34	BN_0	159.8	168.5	72.6-194.5	0.18
BN_{NIFI}	123.8	129.9	8.7–194.2	0.35	BN_{NIFI}	157.3	165.7	72.6-194.5	0.18
$BN_{\mathcal{L}F}$	121.7	128.0	7.6-194.3	0.38	BN _{LF}	155.6	170.5	72.6-193.8	0.21
Middle	119.2	124.0	7.6–193.6	0.41	Middle	155.2	169.5	77.1–193.8	0.21
Random	116.5	119.7	1.6-193.2	0.38	First	152.8	153.4	115.2–191.7	0.15
First	113.3	117.2	3.5-192.5	0.39	Random	147.5	157.3	83.1-194.5	0.25
Last	104.7	110.3	4.4-190.1	0.42	Last	147.5	153.0	72.0-189.6	0.23
Worst	86.3	88.2	1.6-188.9	0.56	Worst	127.7	141.3	68.3-188.9	0.31

• Middle frame selection has the best performance of all simple frame selections

Annotation	Segmentation Performance $(\mathcal{J} + \mathcal{F})$							
Frame Selection	Frame Selection Mean Median		Range	Coef. of Variation				
	8. A	DAVIS 2017	Val.	28				
Best	141.2	143.2	14.9-194.9	0.26				
BN ₀	125.2	128.9	7.6-194.2	0.34				
BN _{NIFI}	123.8	129.9	8.7-194.2	0.35				
BN _{LF}	121.7	128.0	7.6-194.3	0.38				
Middle	119.2	124.0	7.6-193.6	0.41				
Random	116.5	119.7	1.6-193.2	0.38				
First	113.3	117.2	3.5-192.5	0.39				
Last	104.7	110.3	4.4-190.1	0.42				
Worst	86.3	88.2	1.6-188.9	0.56				

Annotation	Segmentation Performance $(\mathcal{J} + \mathcal{F})$							
Frame Selection	Mean	Median	Range	Coef. of Variation				
		DAVIS 2016	Val.	8				
Best	171.2	176.3	130.6-194.9	0.11				
BN ₀	159.8	168.5	72.6-194.5	0.18				
BNNIFI	157.3	165.7	72.6-194.5	0.18				
$BN_{\mathcal{L}F}$	155.6	170.5	72.6-193.8	0.21				
Middle	155.2	169.5	77.1–193.8	0.21				
First	152.8	153.4	115.2–191.7	0.15				
Random	147.5	157.3	83.1-194.5	0.25				
Last	147.5	153.0	72.0-189.6	0.23				
Worst	127.7	141.3	68.3-188.9	0.31				

- BN_{LF} performs better than Middle selection
- BN_{LF} biases selections toward the middle of each video

• $BN_{\mathcal{L}F}$ and Middle frame comparison on DAVIS 2017 Val. set

Annotation	5	Segmentation Performance (\mathcal{J} +			Annotation	5	Segmentation	Performance (\mathcal{J} -	$+\mathcal{F}$)
Frame Selection	Mean	Median	Range	Coef. of Variation	Frame Selection	Mean	Median	Range	Coef. of Variation
1992-0950 N.S. 5 N.G. 1992		DAVIS 2017	Val.	3			DAVIS 2016	Val.	10000000000000000000000000000000000000
Best	141.2	143.2	14.9-194.9	0.26	Best	171.2	176.3	130.6-194.9	0.11
BN_0	125.2	128.9	7.6–194.2	0.34	BN_0	159.8	168.5	72.6-194.5	0.18
BN _{NIFI}	123.8	129.9	8.7–194.2	0.35	BN _{NIFI}	157.3	165.7	72.6-194.5	0.18
$BN_{\mathcal{L}F}$	121.7	128.0	7.6-194.3	0.38	BN _{LF}	155.6	170.5	72.6-193.8	0.21
Middle	119.2	124.0	7.6–193.6	0.41	Middle	155.2	169.5	77.1-193.8	0.21
Random	116.5	119.7	1.6-193.2	0.38	First	152.8	153.4	115.2-191.7	0.15
First	113.3	117.2	3.5-192.5	0.39	Random	147.5	157.3	83.1-194.5	0.25
Last	104.7	110.3	4.4-190.1	0.42	Last	147.5	153.0	72.0-189.6	0.23
Worst	86.3	88.2	1.6-188.9	0.56	Worst	127.7	141.3	68.3-188.9	0.31

• BN0 has better performance than all simple frame selections

Frame 1

Frame 11

If we have limited number of annotated frames

	DAVIS	S 2017	DAVIS	SegTrack	YT-VOS
Number of	Train	Val.	'16 Val.	v2	(1st 1,000)
Objects	144	61	20	24	1,000
Videos	60	30	20	14	607
Annotated Frames	4,209	1,999	1,376	1,066	16,715
Object Annotations	10,238	3,984	1,376	1,515	26,742
Annotated Frames P	er Video		00		
Mean	70.2	66.6	68.8	76.1	27.5
Median	71	67.5	67.5	39	30
Range	25-100	34-104	40-104	21-279	8–36
Coef. of Variation	0.22	0.31	0.32	1.03	0.29

If we have limited number of annotated frames

• BN_{LF} outperforms all other simple selections strategies

Table 5. Result	ts on Data	sets with L	imited Frames	s Per Video.
Annotation	S	egmentation l	Performance (\mathcal{J} -	$+\mathcal{F})$
Frame				Coef. of
Selection	Mean	Median	Range	Variation
207		SegTracky	2	
BN _{LF}	134.7	145.9	14.3-184.6	0.32
Middle	134.5	143.5	14.3-182.8	0.32
BN _{NIFI}	134.3	144.2	33.9-178.5	0.30
BN ₀	130.6	127.3	50.0-183.2	0.30
Last	123.6	130.4	14.3-178.4	0.36
First	122.3	122.5	45.8-181.7	0.31
20-	Y	T-VOS (1st 1	,000)	
BN _{LF}	115.5	126.6	0.0-197.3	0.46
Middle	115.0	124.2	0.0-196.2	0.46
BN _{NIFI}	111.8	121.0	0.0-196.3	0.47
BN ₀	110.4	121.5	0.0-194.1	0.49
First	107.3	114.0	0.0-196.3	0.49
Last	101.2	108.1	0.0-195.4	0.56

If we have limited number of frames

• Additional experiment:

Analyze 10 longest and shortest videos from DAVIS 2017 validation set

Videos from	Number of	Relativ	ve Mean ($\mathcal J$ -	$+\mathcal{F})$
DAVIS 2017 Val.	Frames	BN_0	BN _{NIFI}	$BN_{\mathcal{L}F}$
10 Longest	81-104	+ 11.8%	+ 10.9%	+ 4.0%
All	34-104	+ 10.5%	+ 9.3%	+ 7.4%
10 Shortest	34-43	+ 4.9%	+ 5.0%	+ 3.3%

Cross evaluation results for different segmentation methods

Segmentation	Frame Selection and DAVIS \mathcal{J} & \mathcal{F} Mean							
Method	First	Middle	$BN_{\mathcal{L}F}$	BN _{NIFI}	BN ₀			
OSVOS	56.6	59.6	60.8	61.9	62.6			
OnAVOS	63.9	68.4	68.5	68.4	69.2			

Strengths and Weaknesses

Strengths :

- □ Further improves the performance of OSVOS using fine-tune frame selection network.
- Applies loss function to learn from fewer initial frame labels, as labeling video data are expensive.

Weaknesses:

□ The reason of BubbleNets performs better on longer video is not very reliable to us.

Open Research Questions

There are some other VOS models that uses multiple frames as training examples.
 Can BubbleNets possibly be applied on those models and select the frames that can improve the performance the most?

Reference Link

- https://www.youtube.com/watch?v=XBEMuFVC2lg&fbclid=IwAR0fM9tzUGwruiqzg_epQeVzoGWNPKY6BpMSuYXYydahUXN WrozgHgg9RiE
- https://towardsdatascience.com/semantic-segmentation-with-deep-learning-a-guide-and-code-e52fc8958823
- https://techburst.io/video-object-segmentation-the-basics-758e77321914