SelFlow: Self-Supervised Learning of Optical Flow

Pengpeng Liu, Michael Lyu, Irwin King, Jia Xu

Presenter: Tiantian Li, Yuhan Huang, Sicheng Mu

Outline

- Introduction
- Review of related work
- Method
- Experiments and Main results
- Conclusions
- Pos and cons

What is optical flow?

• Track the apparent motion (correspondence) of object in a video

Visual World is Continuous

Object Permanence

1

Wang et al. Learning Correspondence from the Cycle-consistency of Time, ICCV 2019.

Correspondence in Time

Learning correspondence without human supervision Labeling correspondence is very expensive!

Optical Flow Estimation

Frame 1

Frame 2

Optical Flow

Pixel-level correspondence Sensitive to local perturbation

Fischer et al. FlowNet: Learning Optical Flow with Convolutional Networks, ICCV 2015.

Optical Flow Constraints

1) Brightness constancy constraint (equation)

I(x,y,t) = I(x+u, y+v, t+1)

2) Small motion: (u and v are less than 1 pixel or smooth)

Taylor series expansion of I:

7 /42

$$I(x + u, y + v) = I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + [\text{higher order terms}]$$
$$I(x + u, y + v) \approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$

Challenging: occlusion

Occlusion destroys the consistency constraint in optical flow estimation

cause an error estimation

Related Work

Classical Optical Flow Estimation

- Energy minimization problem based on brightness constancy and spatial smoothness

$$E(u,v) = \iint (I_2(p+w) - I_1)^2 + \alpha^2 \left(||\nabla u||^2 + ||\nabla v||^2 \right) dxdy$$

p = (x,y) ; w(p) = (u(p), v(p))

effective for small motion fail when displacements are large

Classical Optical Flow Estimation

- Coarse to fine manner

Supervised Learning of Optical Flow

- Warp features extracted from CNNs

PWC-Net

pre-training on multiple synthetic datasets

PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume, CVPR 2018

- Unsupervised Learning of Optical Flow
 - Photometric loss (pixel-wised difference)
 - Does not hold for occluded pixels
- DDFlow
 - <u>Data distillation</u> approach to learning the optical flow of occluded pixels

DDFlow: Learning Optical Flow with Unlabeled Data Distillation

Methods

Problem

- Supervised methods requires a large amount of labeled training data, which is difficult to obtain for optical flow, especially when there are occlusions.
- Previous unsupervised learning methods only handle specific cases of occluded pixels. They lack the ability to reason about the optical flow of all possible occluded pixels.

Method

- Self-supervised learning
- Superpixel-based Occlusion Hallucination
- Multi-frame input

Self-Supervision

 Use the flow estimation of NOC-Model as annotations to guide OCC-Model

(i) Self-Supervision Mask $M_{t \rightarrow t+1}$

Notation

- I_t : image of frame t
- $w_{i \rightarrow j}$: flow from I_i to I_j
- $I_{j \to i}^{w}$: warping I_{j} to I_{i} with flow $w_{i \to j}$
- $O_{i \rightarrow j}$: occlusion map from I_i to I_j
- \tilde{I}_t : image with random noise
- $\widetilde{w}, \widetilde{O}, \widetilde{I^w}$

(c) Ground Truth Flow $\mathbf{w}_{t \rightarrow t+1}$

(h) New Occlusion Map $\ \widetilde{O}_{t \rightarrow t+1}$

(f) \tilde{I}_{t+1} (d) Warped Target Image $I_{t+1 \rightarrow t}^{w}$

Occlusion Hallucination

- 1. Generate superpixels;
- 2. Randomly select several superpixels and fill them with noise.

^{/42} (g) Occlusion Map $O_{t \rightarrow t+1}$

(h) New Occlusion Map $\tilde{O}_{t \rightarrow t+1}$

(e) SILC Superpixel

Network

- Based on PWC-Net
 - Pyramid network
 - Warping
 - Cost Volume
- Modifications
 - Three-frame input
 - Forward and backward flow

Occlusion Estimation

Forward-backward consistency

•
$$\widehat{\boldsymbol{w}}_{t \to t+1} = \boldsymbol{w}_{t+1 \to t}(\boldsymbol{p} + \boldsymbol{w}_{t \to t+1}(\boldsymbol{p}))$$

•
$$|\hat{w}_{t \to t+1} + w_{t \to t+1}|^2 < \alpha_1(|\hat{w}_{t \to t+1}|^2 + |w_{t \to t+1}|^2) + \alpha_2$$

Loss Functions

- NOC: photometric loss
- $L_P = \sum_{i,j} \frac{\sum \psi \left(I_i I_{j \to i}^w \right) \odot (1 O_i)}{\sum (1 O_i)}$
- Where $\psi(x) = (|x| + \epsilon)^q$

Loss Functions

• OOC: $L_0 + L_P$ • $L_0 = \sum_{i,j} \frac{\sum \psi(w_{i \to j} - \widetilde{w}_{i \to j}) \odot M_{i \to j}}{\sum M_{i \to j}}$ • $M_{i \rightarrow j} = clip(\tilde{O}_{i \rightarrow j} - O_{i \rightarrow j}, 0, 1)$

(i) Self-Supervision Mask $M_{t \rightarrow t+1}$

(e) SILC Superpixel /42

Supervised Fine-tuning

• Initialize with the pre-trained OCC-Model

•
$$L_s = \sum (\psi (w_{t \to t+1}^{gt} - w_{t \to t+1}) \odot V) / \sum V$$

- $w_{t \to t+1}^{gt}$ is ground truth flow
- V denotes whether the pixel has a label

Experiments and Main Results

Datasets

- ~10,000 frames from Sintel
- Multi-view extensions from KITTI 2012 & 2015
- Rescale pixel values to [0,1] and normalize each channel to the standard normal distribution
- Census Transform
- Data Augmentation

Clean Path

Final Path

Sintel

(Wulff et al., CVPR 2012)

Evaluation Metrics

• Average EndPoint Error (EPE)

• Percentage of Erroneous Pixels (FI) Outliers with the flow end-point error \geq **3px or** \geq **5%** (Uhrig *et al.*, 2017)

Mathad	Sintel	Sintel	ΚΙΤΤΙ	ΚΙΤΤΙ	
Wethod	Clean	Final	2012	2015	
MODOF	_	0.48	_	_	Precision · Recall
OccAwareFlow	(0.54)	(0.48)	0.95*	0.88*	F Measurement = $2 \cdot \frac{1}{\text{Precision} + \text{Recall}}$
MultiFrameOccFlow- Soft	(0.49)	(0.44)	_	0.91*	$Precision = \frac{TP}{TP + FP}$
DDFlow	(0.59)	(0.52)	0.94 *	0.86 *	$Recall = \frac{TP}{TP + FN}$
Ours	(0.59)	(0.52)	0.95 *	0.88*	

	Method	Sintel Clean		Sintel Final		KITTI 2012			KITTI 2015	
		train	test	train	test	train	test	test(Fl)	train	test(Fl)
	BackToBasic+ft [20]	_	_	_	_	11.3	9.9	_	_	_
pa	DSTFlow+ft [37]	(6.16)	10.41	(6.81)	11.27	10.43	12.4	_	16.79	39%
vis	UnFlow-CSS [29]	_	_	(7.91)	10.22	3.29	_	_	8.10	23.30%
per	OccAwareFlow+ft [46]	(4.03)	7.95	(5.95)	9.15	3.55	4.2	_	8.88	31.2%
Inst	MultiFrameOccFlow-None+ft [18]	(6.05)	_	(7.09)	_	_	_	_	6.65	_
Ur	MultiFrameOccFlow-Soft+ft [18]	(3.89)	7.23	(5.52)	8.81	_	_	_	6.59	22.94%
_	DDFlow+ft [26]	(2.92)	6.18	3.98	7.40	2.35	3.0	8.86%	5.72	14.29%
- C	Ours	(2.88)	6.56	(3.87)	6.57	1.69	2.2	7.68%	4.84	14.19%
	FlowNetS+ft [10]	(3.66)	6.96	(4.44)	7.76	7.52	9.1	44.49%	_	_
	FlowNetC+ft [10]	(3.78)	6.85	(5.28)	8.51	8.79	_	_	_	_
	SpyNet+ft [35]	(3.17)	6.64	(4.32)	8.36	8.25	10.1	20.97%	_	35.07%
	FlowFieldsCNN+ft [2]	_	3.78	_	5.36	_	3.0	13.01%	_	18.68 %
	DCFlow+ft [49]	_	3.54	_	5.12	_	_	_	_	14.83%
Ч	FlowNet2+ft [15]	(1.45)	4.16	(2.01)	5.74	(1.28)	1.8	8.8%	(2.3)	11.48%
ise	UnFlow-CSS+ft [29]	_	_	_	_	(1.14)	1.7	8.42%	(1.86)	11.11%
erv	LiteFlowNet+ft-CVPR [14]	(1.64)	4.86	(2.23)	6.09	(1.26)	1.7	_	(2.16)	10.24%
dn	LiteFlowNet+ft-axXiv [14]	(1.35)	4.54	(1.78)	5.38	(1.05)	1.6	7.27%	(1.62)	9.38%
S	PWC-Net+ft-CVPR [43]	(2.02)	4.39	(2.08)	5.04	(1.45)	1.7	8.10%	(2.16)	9.60%
	PWC-Net+ft-axXiv [42]	(1.71)	3.45	(2.34)	4.60	(1.08)	1.5	6.82%	(1.45)	7.90%
	ProFlow+ft [27]	(1.78)	2.82	_	5.02	(1.89)	2.1	7.88%	(5.22)	15.04%
	ContinualFlow+ft [31]	_	3.34	_	4.52	_	_	_	_	10.03%
	MFF+ft [36]	_	3.42	_	4.57	_	1.7	7.87%	_	7.17%
	Ours+ft	(1.68)	3.74	(1.77)	4.26	(0.76)	1.5	6.19%	(1.18)	8.42%

The unsupervised results outperform several famous fully-supervised methods

	Method	Sintel Clean		Sintel Final		KITTI 2012			KITTI 2015	
		train	test	train	test	train	test	test(Fl)	train	test(Fl)
	BackToBasic+ft [20]	_	_	_	_	11.3	9.9	_	_	_
ed	DSTFlow+ft [37]	(6.16)	10.41	(6.81)	11.27	10.43	12.4	_	16.79	39%
vis	UnFlow-CSS [29]	_	_	(7.91)	10.22	3.29	_	_	8.10	23.30%
per	OccAwareFlow+ft [46]	(4.03)	7.95	(5.95)	9.15	3.55	4.2	_	8.88	31.2%
Insu	MultiFrameOccFlow-None+ft [18]	(6.05)	_	(7.09)	_	_	_	_	6.65	_
Ur	MultiFrameOccFlow-Soft+ft [18]	(3.89)	7.23	(5.52)	8.81	_	_	_	6.59	22.94%
	DDFlow+ft [26]	(2.92)	6.18	3.98	7.40	2.35	3.0	8.86%	5.72	14.29%
	Ours	(2.88)	6.56	(3.87)	6.57	1.69	2.2	7.68%	4.84	14.19%
	FlowNetS+ft [10]	(3.66)	6.96	(4.44)	7.76	7.52	9.1	44.49%	_	_
	FlowNetC+ft [10]	(3.78)	6.85	(5.28)	8.51	8.79	_	_	_	_
	SpyNet+ft [35]	(3.17)	6.64	(4.32)	8.36	8.25	10.1	20.97%	_	35.07%
	FlowFieldsCNN+ft [2]	_	3.78	_	5.36	_	3.0	13.01%	_	18.68~%
	DCFlow+ft [49]	_	3.54	_	5.12	_	_	_	_	14.83%
Ч	FlowNet2+ft [15]	(1.45)	4.16	(2.01)	5.74	(1.28)	1.8	8.8%	(2.3)	11.48%
ise	UnFlow-CSS+ft [29]	_	_	_	_	(1.14)	1.7	8.42%	(1.86)	11.11%
erv	LiteFlowNet+ft-CVPR [14]	(1.64)	4.86	(2.23)	6.09	(1.26)	1.7	_	(2.16)	10.24%
dn	LiteFlowNet+ft-axXiv [14]	(1.35)	4.54	(1.78)	5.38	(1.05)	1.6	7.27%	(1.62)	9.38%
S	PWC-Net+ft-CVPR [43]	(2.02)	4.39	(2.08)	5.04	(1.45)	1.7	8.10%	(2.16)	9.60%
	PWC-Net+ft-axXiv [42]	(1.71)	3.45	(2.34)	4.60	(1.08)	1.5	6.82%	(1.45)	7.90%
	ProFlow+ft [27]	(1.78)	2.82	_	5.02	(1.89)	2.1	7.88%	(5.22)	15.04%
	ContinualFlow+ft [31]	_	3.34	_	4.52	_	_	_	_	10.03%
_	MFF+ft [36]	—	3.42	—	4.57	_	1.7	7.87%	—	7.17%
	Ours+ft	(1.68)	3.74	(1.77)	4.26	(0.76)	1.5	6.19%	(1.18)	8.42%

For the first time, the supervised method achieved high performance without any external data

	EPE all	EPE matched	EPE unmatched	d0-10	d10-60	d60-140	s0-10	s10-40	s40+
GroundTruth ^[1]	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
SelFlow ^[2]	4.262	2.040	22.369	4.083	1.715	1.287	0.582	2.343	27.154
VCN ^[3]	4.520	2.195	23.478	4.423	1.802	1.357	0.934	2.816	26.434
ContinualFlow_ROB [4]	4.528	2.723	19.248	5.050	2.573	1.713	0.872	3.114	26.063
MFF ^[5]	4.566	2.216	23.732	4.664	2.017	1.222	0.893	2.902	26.810
IRR-PWC ^[6]	4.579	2.154	24.355	4.165	1.843	1.292	0.709	2.423	28.998
PWC-Net+ ^[7]	4.596	2.254	23.696	4.781	2.045	1.234	0.945	2.978	26.620
CompactFlow ^[8]	4.626	2.099	25.253	4.192	1.825	1.233	0.845	2.677	28.120

Occlusion	Multiple	Self-Supervision	Self-Supervision	Sintel Clean		Sintel Final			KITTI 2012			KITTI 2015			
Handling	Frame	Rectangle	Superpixel	ALL	NOC	OCC	ALL	NOC	OCC	ALL	NOC	OCC	ALL	NOC	OCC
X	X	×	×	(3.85)	(1.53)	(33.48)	(5.28)	(2.81)	(36.83)	7.05	1.31	45.03	13.51	3.71	75.51
×	\checkmark	×	×	(3.67)	(1.54)	(30.80)	(4.98)	(2.68)	(34.42)	6.52	1.11	42.44	12.13	3.47	66.91
1	×	×	×	(3.35)	(1.37)	(28.70)	(4.50)	(2.37)	(31.81)	4.96	0.99	31.29	8.99	3.20	45.68
1	\checkmark	×	×	(3.20)	(1.35)	(26.63)	(4.33)	(2.32)	(29.80)	3.32	0.94	19.11	7.66	2.47	40.99
1	×	×	\checkmark	(2.96)	(1.33)	(23.78)	(4.06)	(2.25)	(27.19)	1.97	0.92	8.96	5.85	2.96	24.17
1	\checkmark	\checkmark	×	(2.91)	(1.37)	(22.58)	(3.99)	(2.27)	(26.01)	1.78	0.96	7.47	5.01	2.55	21.86
✓	✓	×	\checkmark	(2.88)	(1.30)	(22.06)	(3.87)	(2.24)	(25.42)	1.69	0.91	6.95	4.84	2.40	19.68

Table 2. Ablation study. We report EPE of our unsupervised results under different settings over all pixels (ALL), nonoccluded pixels (NOC) and occluded pixels (OCC).

Unsupervised Pre-training	Sintel Clean	Sintel Final	KITTI 2012	KITTI 2015
Without	1.97	2.68	3.93	3.10
With	1.50	2.41	1.55	1.86

Table 3. Ablation study. We report EPE of supervised fine-tuning results on our validation datasets with and without unsupervised pre-training.

DAVIS dataset

Qualitative Results (Sintel Datasets)

Qualitative Results (Sintel Datasets)

Reference Image

Flow Estimation without Self-supervision

Flow Estimation with Self-supervision

Qualitative Results (KITTI Datasets)

Qualitative Results (KITTI Datasets)

38 /42

Comparison with PWC-Net

Reference Image

Flow Estimation using PWC-Net

Flow Estimation using Our Fine-tuned Model

39 /42

(Pengpeng Liu, CVPR 2019 Oral Presentation)

Conclusions

- A self-supervised approach to learning accurate optical flow for both occluded and non-occuluded pixels
- The method achieves state-of-art results on KITTI and Sintel benchmarks

Strengths

- Effectively aggregates temporal information from multiple frames to improve flow prediction.
- Significantly outperforms all existing unsupervised optical flow learning methods.
- Presents the potential of completely reduce the reliance of pretraining on synthetic labeled data

Weakness

• In terms of occlusion estimation only, the noise injection method does not seem to make a difference when compared with DDFlow.

Thank You