Relational Action Forecasting

Chen Sun; Abhinav Shrivastava et al., CVPR 2019

Presenters: Wanda Wang, Vincent Chung, Shreyas Hosamane

Problem Statement

Given a history of H previous frames, the goal is to detect actors and to predict their future actions for the next T frames.

Why is action forecasting important?

Self-driving cars

Human interaction robot

Related work

- Action recognition
- Future prediction
- Relational reasoning

Action recognition

- Action classification
- Temporal action localization
- Spatio-temporal action detection

Action recognition: Action classification

 $p(a^{0:T}|V^{0:T})$

 $V^{0:T}$: frames of the entire video $a^{0:T}$: predicted action labels

eating

driving

fighting

running

6/37

M. Marszalek, I. Laptev, and C. Schmid. Actions in context. In CVPR, 2009

S. Yeung, O. Russakovsky, N. Jin, M. Andriluka, G. Mori, and L. Fei-Fei. Every moment counts: Dense detailed labeling of actions in complex videos. IJCV, 2017

Song, L., Zhang, S., Yu, G., & Sun, H. (2019). TACNet: Transition-Aware Context Network for Spatio-Temporal Action Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 11987-11995).

Action recognition: Temporal action localization

$$p(a^{0:T}, b^{0:T}|V^{0:T})$$

 $V^{0:T}$: frames of the entire video $a^{0:T}$: predicted action labels $b^{0:T}$: predicted locations of actions

M. Marszalek, I. Laptev, and C. Schmid. Actions in context. In CVPR, 2009

S. Yeung, O. Russakovsky, N. Jin, M. Andriluka, G. Mori, and L. Fei-Fei. Every moment counts: Dense detailed labeling of actions in complex videos. IJCV, 2017

Song, L., Zhang, S., Yu, G., & Sun, H. (2019). TACNet: Transition-Aware Context Network for Spatio-Temporal Action Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 11987-11995).

Action recognition: Spatio-temporal action detection

 $p(a_{1:N}^{0:T}, b_{1:N}^{0:T}|V^{0:T})$

N : number of predicted actors $V^{0:T}$: frames of the entire video $a_{1:N}^{0:T}$: predicted action labels of N actors $b_{1:N}^{0:T}$: predicted locations of N actors

M. Marszalek, I. Laptev, and C. Schmid. Actions in context. In CVPR, 2009

S. Yeung, O. Russakovsky, N. Jin, M. Andriluka, G. Mori, and L. Fei-Fei. Every moment counts: Dense detailed labeling of actions in complex videos. IJCV, 2017

Song, L., Zhang, S., Yu, G., & Sun, H. (2019). TACNet: Transition-Aware Context Network for Spatio-Temporal Action Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 11987-11995).

Future prediction

Pixel prediction

Petrovic CVPR 2006, Vondrick NIPS 2016, Walker ECCV 2016, Xue NIPS 2016, Villegas ICML 2017, Denton ICML 2018,

Trajectory prediction

Kitani ECCV 2012, Alahi CVPR 2016, Robicquet ECCV 2016, Lee CVPR 2017, Gupta CVPR 2018, Sun ICLR 2019,

Relational reasoning

• This work aims to capture human-human relationships to reason about future actions

10/37

Set of actions for last observed frame

Action forecasting

Sitting Talking

Holding Standing Hugging Standing

Next: Clink glass Next: Serving Next: Kissing

CVPR 2019 Oral Session 1-1C: Action & Video : https://www.youtube.com/watch?v=JwaBi_2JFeU&t=1105s

Mathematical representation

 $p(N, b_{1:N}^0, a_{1:N}^{0:T} | V^{-H:0})$

 $V^{-H:0} \rightarrow \text{visual history of H previous frames}$ $N \rightarrow \text{number of predicted actors}$ $b_{1:N}^0 \rightarrow \text{predicted locations (bounding boxes) of N actors at time t = 0}$ $a_{1:N}^{0:T} \rightarrow \text{predicted action labels for N actors for time t = 0:T}$

Creating the nodes in the graph

Modeling node dynamics

Modeling the edges

Modeling the edges

Modeling the edges

 $\mathbf{z}_i = \sum_j \alpha_{ij} \mathbf{h}_j$ h_i $\alpha_{ij} = \operatorname{softmax}(f_{\operatorname{attn}}(\mathbf{e}_{ij}))$ $\tilde{\mathbf{h}}_i = f_{\text{node}}(\mathbf{z}_i)$ virtual node $\tilde{\mathbf{h}}_i = f_{\text{node}}([\mathbf{h}_i; \mathbf{z}_i])$ Z_i difficulty distinguishing node features from neighbor features ...

$$\tilde{h}_{1:N} = f_{\text{GNN}}(h_{1:N}) = \prod_{i=1}^{N} \delta(\tilde{h}_i | f_{\text{node}}([h_i, z_i])) \delta(z_i | \sum_j \alpha_{ij} h_j) \prod_{j=1}^{N} \delta(\alpha_{ij} | \mathcal{S}_j(f_{\text{attn}}(e_{i,1:N})) \delta(e_{ij} | f_{\text{edge}}(h_i, h_j))$$

Overall DR²N model

Training

$$\mathcal{L}^{\text{total}} = \alpha \mathcal{L}^{\text{loc}} + \sum_{t=0}^{T} \beta_t \mathcal{L}_t^{\text{cls}}$$

 $\mathcal{L}^{loc} \rightarrow$ bounding box localization loss $\mathcal{L}_t^{cls} \rightarrow$ action classification loss at time t $\alpha, \beta_t \rightarrow$ scalar weights

α = 1

 β_0 = 1, linearly decrease such that β_t = 0.5

Implementation details

- RPN: ResNet-50 initialized with pre-trained ImageNet weights
- Feature network: S3D-G weights pre-trained from Kinetics-400
- GRU: RNN architecture to model action dynamics
- Synchronous SGD with batch size 4 per GPU
- 10 GPUs in total
- Warm-start, cosine learning rate decay
- Gradient multiplier

Experimental setup

AVA (Atomic Visual Actions)

- Large-scale action detection dataset (430 15-min clips)
- 80 atomic visual actions
- Multiple actors with multiple action labels
- If IoU > 0.5 and action label is correct → true positive

Left: Sit, Ride, Talk to; Right: Sit, Drive, Listen to

Left: Stand, Watch; Middle: Stand, Play instrument; Right: Sit, Play instrument

Orange: 1 pose action Red: 0-3 interactions with objects Blue: 0-3 interactions with other people

C. Gu, C. Sun, S. Vijayanarasimhan, C. Pantofaru, D. A. Ross, G. Toderici, Y. Li, S. Ricco, R. Sukthankar, C. Schmid, and J. Malik. AVA: A video dataset of spatio-temporally localized atomic visual actions. In CVPR, 2018.

Atomic Actions

The text shows pairs of atomic actions for the people in red bounding boxes.

C. Gu, C. Sun, S. Vijayanarasimhan, C. Pantofaru, D. A. Ross, G. Toderici, Y. Li, S. Ricco, R. Sukthankar, C. Schmid, and J. Malik. AVA: A video dataset of spatio-temporally localized atomic visual actions. In CVPR, 2018.

J-HMDB (Joint-annotated Human Motion Database)

- 21 categories (1.4 seconds/clip)
- One actor with a single action label
- Test for an early action classification problem

Methods for ablation study

Single-head

• Train a separate model for each future time step

Multi-head

• Train one model for all future t

GRU

- Predicted from hidden states of GRU
- Without edges (relations)

Graph-GRU

- With edges
- **RN:** equal weights
- GAT: weighted differently but is not sure if it should focus on features from itself or features from neighbors
 DR²N: proposed method

Action forecasting results on AVA dataset

Method	Dynamics Model	Relation Model	t = 0	t = 1	t = 2	t = 3	t = 4	t = 5
Single-head	-	-	19.1	7.8	5.3	4.2	2.6	1.8
Multi-head	-	-	16.0	9.4	6.8	5.4	4.3	3.6
GRU	GRU	-	18.7	13.1	10.3	8.0	6.7	5.7
Graph-GRU	GRU	RN [51]	17.3	12.3	9.9	7.7	6.5	5.3
Graph-GRU	GRU	GAT [61]	16.4	12.3	9.3	7.3	6.2	5.2
Graph-GRU	GRU	DR ² N (Us)	20.4	14.4	11.2	9.3	7.5	6.8

4. DR²N outperforms the other two methods

Short duration action is hard to predict

Change in AP performance from t = 0 to t = 1

Most gains for actions with explicit interactions or where other actors provide useful context

Change in AP performance from adding graph connections at t = 0

Visualization of discriminative relations

- Orange boxes: query actor (whose actions are to be predicted)
- Blue boxes: top 3 actor proposals with highest attention weights

Results Visualization

Prediction: Eat Ground truth: Eat

Prediction: Get Up Ground truth: Get Up

Results Visualization

Prediction: Put down Ground truth: Put down

Prediction: Smoke Ground truth: Smoke

ut down

Results Visualization

Prediction: Read Ground truth: Read

Prediction: Open (door) Ground truth: Open (door)

Results Visualization (Failure modes)

Prediction: Get up Ground truth: Keep kneeling Reason: Wrong duration

Prediction: Close Ground truth: Open Reason: Multiple futures

Early action classification on J-HMDB

• Take the first K% of frames and predict the label of the clip

Model	10%	20%	30%	40%	50%
Soomro <i>et al</i> . [55]	≈ 5	≈ 12	≈ 21	≈ 25	≈ 30
Singh <i>et al</i> . [54]	≈ 48	≈ 59	≈ 62	≈ 66	≈ 66
GRU	52.5	56.2	61.1	65.2	65.9
GAT [61]	58.1	61.8	64.4	68.7	68.8
DR^2N	60.6	65.8	68.1	71.4	71.8

Strengths & Weaknesses

Strengths

- Proposed method outperforms existing methods on a complex dataset like AVA
- DR²N also improves performance on task of early action classification from previous SOTA of 48% to 60%

Weaknesses

- In the relations visualization, duplicate detections exist that might unnecessarily increase graph size and also affect the weights
- Struggles with actions having multiple possible futures and when duration is hard to predict

Possible extensions

- Implement NMS to suppress duplicate detections and obtain better graph representations
- Conduct study with different values of H to demonstrate effect of temporal context duration
- Model human-object relationships in addition to human-human

Conclusion

- This paper proposed a multi-person action forecasting model (DR²N) that considers temporal and spatial interactions among actors
- AVA and J-HMDB datasets used for evaluation demonstrate effectiveness