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Standard classifiers 

106 examples 

Nearest neighbor 

Shakhnarovich, Viola, Darrell 2003 
Berg, Berg, Malik 2005... 

Neural networks 

LeCun, Bottou, Bengio, Haffner 1998 
Rowley, Baluja, Kanade 1998 
… 
 
 Support Vector Machines Conditional Random Fields 

McCallum, Freitag, Pereira 
2000; Kumar, Hebert 2003 
… 

Guyon, Vapnik 
Heisele, Serre, Poggio, 
2001,… 

Slide adapted from Antonio Torralba 

Boosting 

Viola, Jones 2001, 
Torralba et al. 2004, 
Opelt et al. 2006,… 
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Traditional	Image	Categorization:	
Training	phase	
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Features	have	been	key..	

SIFT [Loewe IJCV 04] HOG [Dalal and Triggs CVPR 05] 

SPM [Lazebnik et al. CVPR 06] DPM [Felzenszwalb et al. PAMI 10] 

Color Descriptor [Van De Sande et al. PAMI 10] 

Hand-crafted	



What	about	learning	the	features?	

•  Learn	a	feature	hierarchy	all	the	way	from	pixels	to	
classifier	

•  Each	layer	extracts	features	from	the	output	of	
previous	layer	

•  Layers	have	(nearly)	the	same	structure	

•  Train	all	layers	jointly	(“end-to-end”)	

Layer	1	 Layer	2	 Layer	3	 Simple		
Classifier	

Image/	
Video	
Pixels	



Learning	Feature	Hierarchy	

Goal:	Learn	useful	higher-level	features	from	images	
Feature	representation	

Input data 

1st	layer		
“Edges”	

2nd	layer		
“Object	parts”	

3rd	layer		
“Objects”	

Pixels 

Lee et al., ICML 2009;  
CACM 2011 

Slide: Rob Fergus 



Learning	Feature	Hierarchy	

•  Better performance 

•  Other domains (unclear how to hand engineer): 
–  Kinect 
–  Video 
–  Multi spectral 

•  Feature computation time 
–  Dozens of features needed for good performance 
–  Prohibitive for large datasets (10’s sec /image) 

 
 

Slide: R. Fergus 



“Shallow”	vs.	“deep”	architectures	

Hand-designed	
feature	extraction	

Trainable	
classifier	

Image/	
Video	
Pixels	

Object	
Class	

Layer	1	 Layer	N	 Simple	
classifier	

Object	
Class	

Image/	
Video	
Pixels	

Traditional recognition: “Shallow” architecture 

Deep learning: “Deep” architecture 

… 



Neural	network	definition	

Figure from Christopher Bishop  

•  Nonlinear	classifier	
•  Can	approximate	any	continuous	function	to	arbitrary	

accuracy	given	sufficiently	many	hidden	units	



Neural	network	definition	

•  Activations:		

•  Nonlinear	activation	function	h	(e.g.	sigmoid,	RELU):	

Figure from Christopher Bishop  



•  Layer	2	

•  Layer	3	(final)	

•  Outputs	(e.g.	sigmoid/softmax)	

•  Putting	everything	together:	

Neural	network	definition	

(binary) (multiclass) 



Sigmoid 

tanh tanh(x) 

ReLU max(0,x) 

Leaky ReLU 
max(0.1x,	x)	

Maxout  
ELU 

Nonlinear	activation	functions	

Andrej Karpathy 



Multilayer	networks	
•  Cascade	neurons	together	
•  Output	from	one	layer	is	the	input	to	the	next	
•  Each	layer	has	its	own	sets	of	weights	
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Feed-forward	networks	
•  Predictions	are	fed	forward	through	the	

network	to	classify	

x0

x1

x2

xP

~✓0,0

~✓0,1

~✓0,2 ~✓1,2

~✓1,1

~✓1,0

✓2,0

✓2,1

✓2,2

HKUST 



Feed-forward	networks	
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Feed-forward	networks	
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Feed-forward	networks	
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Feed-forward	networks	
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Feed-forward	networks	
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Deep	neural	networks	
•  Lots	of	hidden	layers	
•  Depth	=	power	(usually)	

Figure from http://neuralnetworksanddeeplearning.com/chap5.html  
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Convolutional	Neural	Networks		
(CNN,	ConvNet,	DCN)	

•  CNN	=	a	multi-layer	neural	network	with	
– Local	connectivity:	

•  Neurons	in	a	layer	are	only	connected	to	a	small	region	
of	the	layer	before	it		

– Share	weight	parameters	across	spatial	positions:	
•  Learning	shift-invariant	filter	kernels	

	

Image credit: A. Karpathy  



LeNet	[LeCun	et	al.	1998]	

Gradient-based	learning	applied	to	document	
recognition	[LeCun,	Bottou,	Bengio,	Haffner	1998]	 LeNet-1 from 1993 

•  Stack	multiple	stages	of	feature	
extractors	

•  Higher	stages	compute	more	
global,	more	invariant	features	

•  Classification	layer	at	the	end	



ImageNet	Challenge	2012	

  

Validation classification

  

Validation classification

  

Validation classification

[Deng	et	al.	CVPR	2009]		

•  ~14	million	labeled	images,	20k	classes	

•  Images	gathered	from	Internet	

•  Human	labels	via	Amazon	Turk		

•  ImageNet	Challenge:	1.2	million	training	
images,	1000	classes	

A. Krizhevsky, I. Sutskever, and G. Hinton, 
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012 



AlexNet	
			Similar	framework	to	LeCun’98	but:	

•  Bigger	model	(7	hidden	layers,	650,000	units,	60,000,000	params)	
•  More	data	(106	vs.	103	images)	
•  GPU	implementation	(50x	speedup	over	CPU)	

•  Trained	on	two	GPUs	for	a	week		

A. Krizhevsky, I. Sutskever, and G. Hinton, 
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012 



AlexNet	for	image	classification	

“car” 

AlexNet 

Fixed input size: 224x224x3 



ImageNet	Classification	Challenge	

http://image-net.org/challenges/talks/2016/ILSVRC2016_10_09_clsloc.pdf 

AlexNet 



Industry	Deployment	

•  Used	in	Facebook,	Google,	Microsoft	
•  Startups	
•  Image	Recognition,	Speech	Recognition,	….	
•  Fast	at	test	time	

Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face  
Verification, CVPR’14 



Beyond	classification	
•  Detection	
•  Segmentation	
•  Regression		
•  Pose	estimation		
•  Matching	patches	
•  Synthesis	
	

and	many	more…	
	



CNNs	for	Object	detection	

Fast-RCNN [Girshick et al. ICCV 2015] 



Labeling	Pixels:	Semantic	Labels	

Fully Convolutional Networks for Semantic Segmentation [Long et al. CVPR 2015]  



Labeling	Pixels:	Edge	Detection	

DeepEdge: A Multi-Scale Bifurcated Deep Network for Top-Down Contour Detection  
[Bertasius et al. CVPR 2015] 



CNN	for	Regression	

DeepPose [Toshev and Szegedy CVPR 2014] 



CNN	as	a	Similarity	Measure	for	Matching	

FaceNet [Schroff et al. 2015] 
Stereo matching [Zbontar and LeCun CVPR 2015] 
Compare patch [Zagoruyko and Komodakis 2015] 

Match ground and aerial images  
[Lin et al. CVPR 2015] FlowNet [Fischer et al 2015] 



CNN	for	Image	Generation	

Learning to Generate Chairs with Convolutional Neural Networks [Dosovitskiy et al. CVPR 2015] 



Chair	Morphing	

Learning to Generate Chairs with Convolutional Neural Networks [Dosovitskiy et al. CVPR 2015] 



Questions?	

See	you	Monday!	
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