Convolutional neural networks I

September $27^{\text {th }}, 2019$

Yong Jae Lee UC Davis

Standard classifiers

Nearest neighbor

Shakhnarovich, Viola, Darrell 2003 Berg, Berg, Malik 2005...

Neural networks

LeCun, Bottou, Bengio, Haffner 1998 Rowley, Baluja, Kanade 1998

Viola, Jones 2001, Torralba et al. 2004, Opelt et al. 2006,...

Conditional Random Fields

McCallum, Freitag, Pereira 2000; Kumar, Hebert 2003

Standard classifiers

Nearest neighbor

Shakhnarovich, Viola, Darrell 2003 Berg, Berg, Malik 2005...

Neural networks

LeCun, Bottou, Bengio, Haffner 1998 Rowley, Baluja, Kanade 1998

Support Vector Machines
Guyon, Vapnik
Heisele, Serre, Poggio,
$2001, \ldots$

Viola, Jones 2001, Torralba et al. 2004, Opelt et al. 2006,...

Conditional Random Fields

McCallum, Freitag, Pereira 2000; Kumar, Hebert 2003

Traditional Image Categorization: Training phase

Traditional Image Categorization: Testing phase

Training

Training Labels

Classifier Training

Testing

Test Image

Features have been key..

Point sampling strategy
Color descriptor computation
Bag-of-words model

Color Descriptor [Van De Sande et al. PAMI 10]

What about learning the features?

- Learn a feature hierarchy all the way from pixels to classifier
- Each layer extracts features from the output of previous layer
- Layers have (nearly) the same structure
- Train all layers jointly ("end-to-end")

Learning Feature Hierarchy

Goal: Learn useful higher-level features from images

Feature representation

Lee et al., ICML 2009; CACM 2011

Learning Feature Hierarchy

- Better performance
- Other domains (unclear how to hand engineer):
- Kinect
- Video
- Multi spectral

- Feature computation time
- Dozens of features needed for good performance
- Prohibitive for large datasets (10's sec /image)

"Shallow" vs. "deep" architectures

Traditional recognition: "Shallow" architecture

Deep learning: "Deep" architecture

Neural network definition

- Nonlinear classifier
- Can approximate any continuous function to arbitrary accuracy given sufficiently many hidden units

Neural network definition

- Activations: $a_{j}=\sum_{i=0}^{D} w_{j i}^{(1)} x_{i}$
- Nonlinear activation function h (e.g. sigmoid, RELU):

$$
z_{j}=h\left(a_{j}\right)
$$

Neural network definition

- Layer 2

$$
\begin{aligned}
& a_{j}=\sum_{i=0}^{D} w_{j i}^{(1)} x_{i} \\
& z_{j}=h\left(a_{j}\right)
\end{aligned}
$$

- Layer 3 (final)

$$
a_{k}=\sum_{j=0}^{M} w_{k j}^{(2)} z_{j}
$$

- Outputs (e.g. sigmoid/softmax) (binary)

$$
y_{k}=\sigma\left(a_{k}\right)=\frac{1}{1+\exp \left(-a_{k}\right)}
$$

$$
\begin{aligned}
& \text { (multiclass) } \\
& \qquad y_{k}=\frac{\exp \left(a_{k}\right)}{\sum_{j} \exp \left(a_{j}\right)}
\end{aligned}
$$

- Putting everything together:

$$
y_{k}(\mathbf{x}, \mathbf{w})=\sigma\left(\sum_{j=0}^{M} w_{k j}^{(2)} h\left(\sum_{i=0}^{D} w_{j i}^{(1)} x_{i}\right)\right)
$$

Nonlinear activation functions

Sigmoid

$\sigma(x)=1 /\left(1+e^{-x}\right)$
$\boldsymbol{\operatorname { t a n h }} \tanh (\mathrm{x})$

ReLU $\max (0, x)$

Leaky ReLU $\max (0.1 x, x)$

Maxout $\quad \max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)$
ELU $\quad f(x)= \begin{cases}x \\ \alpha(\exp (x)-1) & \text { if } i x>0 \\ \text { if } \leq 0\end{cases}$

Multilayer networks

- Cascade neurons together
- Output from one layer is the input to the next
- Each layer has its own sets of weights

Feed-forward networks

- Predictions are fed forward through the network to classify

Feed-forward networks

- Predictions are fed forward through the network to classify

Feed-forward networks

- Predictions are fed forward through the network to classify

Feed-forward networks

- Predictions are fed forward through the network to classify

Feed-forward networks

- Predictions are fed forward through the network to classify

Feed-forward networks

- Predictions are fed forward through the network to classify

Deep neural networks

- Lots of hidden layers
- Depth = power (usually)
input layer
hidden layer 1 hidden layer 2 hidden layer 3

Convolutional Neural Networks (CNN, ConvNet, DCN)

- $\mathrm{CNN}=$ a multi-layer neural network with
- Local connectivity:
- Neurons in a layer are only connected to a small region of the layer before it
- Share weight parameters across spatial positions:
- Learning shift-invariant filter kernels

Image credit: A. Karpathy

LeNet [LeCun et al. 1998]

- Stack multiple stages of feature extractors
- Higher stages compute more global, more invariant features
- Classification layer at the end

Gradient-based learning applied to document recognition [LeCun, Bottou, Bengio, Haffner 1998]

LeNet-1 from 1993

ImageNet Challenge 2012

- ~14 million labeled images, 20k classes
- Images gathered from Internet
- Human labels via Amazon Turk
- ImageNet Challenge: 1.2 million training images, 1000 classes
[Deng et al. CVPR 2009]
A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

AlexNet

Similar framework to LeCun'98 but:

- Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
- More data (10^{6} vs. 10^{3} images)
- GPU implementation (50x speedup over CPU)
- Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

AlexNet for image classification

Fixed input size: $224 \times 224 \times 3$

ImageNet Classification Challenge

http://image-net.org/challenges/talks/2016/ILSVRC2016_10_09_clsloc.pdf

Industry Deployment

- Used in Facebook, Google, Microsoft
- Startups
- Image Recognition, Speech Recognition,
- Fast at test time

Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR'14

Beyond classification

- Detection
- Segmentation
- Regression
- Pose estimation
- Matching patches
- Synthesis
and many more...

CNNs for Object detection

Fast-RCNN [Girshick et al. ICCV 2015]

Labeling Pixels: Semantic Labels

Fully Convolutional Networks for Semantic Segmentation [Long et al. CVPR 2015]

Labeling Pixels: Edge Detection

DeepEdge: A Multi-Scale Bifurcated Deep Network for Top-Down Contour Detection [Bertasius et al. CVPR 2015]

CNN for Regression

DeepPose [Toshev and Szegedy CVPR 2014]

CNN as a Similarity Measure for Matching

Stereo matching [Zbontar and LeCun CVPR 2015] Compare patch [Zagoruyko and Komodakis 2015] FlowNetSimple

FlowNet [Fischer et al 2015]

Match ground and aerial images
[Lin et al. CVPR 2015]

CNN for Image Generation

Learning to Generate Chairs with Convolutional Neural Networks [Dosovitskiy et al. CVPR 2015]

Chair Morphing

Questions?

See you Monday!

