Convolutional neural networks I

September 27th, 2019

Yong Jae Lee UC Davis

Many slides from Rob Fergus, Svetlana Lazebnik, Jia-Bin Huang, Derek Hoiem, Adriana Kovashka, Andrej Karpathy

Standard classifiers

Standard classifiers

Traditional Image Categorization: Training phase

Traditional Image Categorization: Testing phase

Features have been key..

Color Descriptor [Van De Sande et al. PAMI 10]

What about learning the features?

- Learn a *feature hierarchy* all the way from pixels to classifier
- Each layer extracts features from the output of previous layer
- Layers have (nearly) the same structure
- Train all layers jointly ("end-to-end")

Learning Feature Hierarchy

Goal: Learn useful higher-level features from images

Slide: Rob Fergus

Learning Feature Hierarchy

- Better performance
- Other domains (unclear how to hand engineer):
 - Kinect
 - Video
 - Multi spectral

- Feature computation time
 - Dozens of features needed for good performance
 - Prohibitive for large datasets (10's sec /image)

Slide: R. Fergus

"Shallow" vs. "deep" architectures

Traditional recognition: "Shallow" architecture

Neural network definition

- Nonlinear classifier
- Can approximate any continuous function to arbitrary accuracy given sufficiently many hidden units

Neural network definition

• Nonlinear activation function *h* (e.g. sigmoid, RELU):

$$z_j = h(a_j)$$

Figure from Christopher Bishop

Neural network definition

• Layer 2

• Layer 3 (final)

$$a_k = \sum_{j=0}^{m} w_{kj}^{(2)} z_j$$

M

hidden units x_D $w_{MD}^{(1)}$ x_M $w_{KM}^{(2)}$ y_K outputs x_1 x_0 z_0 z_0

• Outputs (e.g. sigmoid/softmax) (binary)

$$y_k = \sigma(a_k) = \frac{1}{1 + \exp(-a_k)}$$

(multiclass)	()
<i>au</i> —	$\exp(a_k)$
$y_k =$	$\overline{\sum_{i} \exp(a_i)}$

• Putting everything together:

$$y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{j=0}^M w_{kj}^{(2)} h\left(\sum_{i=0}^D w_{ji}^{(1)} x_i \right) \right)$$

Nonlinear activation functions

Leaky ReLU max(0.1x, x)

Maxout

 $\max(w_1^Tx+b_1,w_2^Tx+b_2)$

ELU $f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$

Multilayer networks

- Cascade neurons together
- Output from one layer is the input to the next
- Each layer has its own sets of weights

Deep neural networks

- Lots of hidden layers
- Depth = power (usually)

Convolutional Neural Networks (CNN, ConvNet, DCN)

- CNN = a multi-layer neural network with
 - Local connectivity:
 - Neurons in a layer are only connected to a small region of the layer before it
 - Share weight parameters across spatial positions:
 - Learning shift-invariant filter kernels

Image credit: A. Karpathy

LeNet [LeCun et al. 1998]

- Stack multiple stages of feature extractors
- Higher stages compute more global, more invariant features
- Classification layer at the end

Gradient-based learning applied to document recognition [LeCun, Bottou, Bengio, Haffner 1998]

LeNet-1 from 1993

ImageNet Challenge 2012

IM GENET

[Deng et al. CVPR 2009]

- ~14 million labeled images, 20k classes
- Images gathered from Internet
- Human labels via Amazon Turk
- ImageNet Challenge: 1.2 million training images, 1000 classes

A. Krizhevsky, I. Sutskever, and G. Hinton,

ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

AlexNet

Similar framework to LeCun'98 but:

- Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
- More data (10⁶ vs. 10³ images)
- GPU implementation (50x speedup over CPU)
 - Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton,

ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

AlexNet for image classification

Fixed input size: 224x224x3

ImageNet Classification Challenge

http://image-net.org/challenges/talks/2016/ILSVRC2016_10_09_clsloc.pdf

Industry Deployment

- Used in Facebook, Google, Microsoft
- Startups
- Image Recognition, Speech Recognition,
- Fast at test time

Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR'14

Beyond classification

- Detection
- Segmentation
- Regression
- Pose estimation
- Matching patches
- Synthesis

and many more...

CNNs for Object detection

Fast-RCNN [Girshick et al. ICCV 2015]

Labeling Pixels: Semantic Labels

Fully Convolutional Networks for Semantic Segmentation [Long et al. CVPR 2015]

Labeling Pixels: Edge Detection

DeepEdge: A Multi-Scale Bifurcated Deep Network for Top-Down Contour Detection [Bertasius et al. CVPR 2015]

CNN for Regression

DeepPose [Toshev and Szegedy CVPR 2014]

CNN as a Similarity Measure for Matching

CNN for Image Generation

Learning to Generate Chairs with Convolutional Neural Networks [Dosovitskiy et al. CVPR 2015]

Chair Morphing

Learning to Generate Chairs with Convolutional Neural Networks [Dosovitskiy et al. CVPR 2015]

Questions?

See you Monday!