Convolutional neural networks II

September 30 th, 2019

Yong Jae Lee
 UC Davis

Announcements

- Sign-up for paper presentations

Standard classifiers

Nearest neighbor

Shakhnarovich, Viola, Darrell 2003 Berg, Berg, Malik 2005...

Neural networks

LeCun, Bottou, Bengio, Haffner 1998 Rowley, Baluja, Kanade 1998

Support Vector Machines
Guyon, Vapnik
Heisele, Serre, Poggio,
$2001, \ldots$

Viola, Jones 2001, Torralba et al. 2004, Opelt et al. 2006,...

Conditional Random Fields

McCallum, Freitag, Pereira 2000; Kumar, Hebert 2003

Deep neural networks

- Lots of hidden layers
- Depth = power (usually)
input layer
hidden layer 1 hidden layer 2 hidden layer 3

How do we train them?

- The goal is to iteratively find a set of weights that allow the activations/outputs to match the desired output
- For this, we will minimize a loss function
- The loss function quantifies the agreement between the predicted scores and GT labels
- First, let's simplify and assume we have a single layer of weights in the network

Classification goal

Classification scores

$$
\begin{array}{cc}
f(x, W)=W x & +\mathrm{b} \\
\mathrm{f}(\mathbf{x}, \mathbf{W}) & \begin{array}{l}
10 \text { numbers, } \\
\text { indicating class } \\
\text { scores }
\end{array}
\end{array}
$$

[32×32×3] array of numbers $0 . . .1$
(3072 numbers total)

Linear classifier

Linear classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Linear classifier

TODO:

1. Define a loss function that quantifies our unhappiness with the scores across the training data.
2. Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

Linear classifier

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

cat
3.2
1.3
2.2
car
5.1
4.9
2.5
frog
-1.7
2.0
-3.1

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

Hinge loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the loss has the form:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$

Want: $\mathrm{s}_{\mathrm{y}_{\mathrm{i}}}>=\mathrm{s}_{\mathrm{j}}+1$
i.e. $\mathrm{s}_{\mathrm{j}}-\mathrm{s}_{\mathrm{y}_{\mathrm{i}}}+1<=0$

If true, loss is 0
If false, loss is magnitude of violation

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes. With some W the scores $\quad f(x, W)=W x$ are:

Hinge loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the loss has the form:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& =\max (0,5.1-3.2+1) \\
& +\max (0,-1.7-3.2+1) \\
& =\max (0,2.9)+\max (0,-3.9) \\
& =2.9+0 \\
& =2.9
\end{aligned}
$$

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes. With some W the scores $\quad f(x, W)=W x$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Loss:	2.9	0	

Hinge loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the loss has the form:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& =\max (0,1.3-4.9+1) \\
& +\max (0,2.0-4.9+1) \\
& =\max (0,-2.6)+\max (0,-1.9) \\
& =0+0 \\
& =0
\end{aligned}
$$

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes. With some W the scores $\quad f(x, W)=W x$ are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Loss:	2.9	0	12.9

Hinge loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the loss has the form:

$$
\begin{aligned}
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
= & \max (0,2.2-(-3.1)+1) \\
& +\max (0,2.5-(-3.1)+1) \\
= & \max (0,5.3+1) \\
& +\max (0,5.6+1) \\
= & 6.3+6.6 \\
= & 12.9
\end{aligned}
$$

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

Hinge loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the loss has the form:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
and the full training loss is the mean over all examples in the training data:

$$
\begin{aligned}
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i} \\
& L=(2.9+0+12.9) / 3 \\
&= 15.8 / 3=5.3
\end{aligned}
$$

Linear classifier: Hinge loss

$$
\begin{aligned}
& f(x, W)=W x \\
& L=\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, f\left(x_{i} ; W\right)_{j}-f\left(x_{i} ; W\right)_{y_{i}}+1\right)
\end{aligned}
$$

Linear classifier: Hinge loss

Weight Regularization

$\lambda=$ regularization strength (hyperparameter)

$$
L=\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, f\left(x_{i} ; W\right)_{j}-f\left(x_{i} ; W\right)_{y_{i}}+1\right)+\lambda R(W)
$$

In common use:
L2 regularization
L1 regularization Dropout

Another loss: Softmax (cross-entropy)

scores $=$ unnormalized log probabilities of the classes.

$$
P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \text { where } \quad s=f\left(x_{i} ; W\right)
$$

Want to maximize the log likelihood, or (for a loss function)
cat
3.2
car
5.1

$$
\text { frog }-1.7
$$

to minimize the negative log likelihood of the correct class:

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

Another loss: Softmax (cross-entropy)

$$
L_{i}=-\log \left(\frac{e^{s_{y_{i}}}}{\sum_{j} e^{s_{j}}}\right)
$$

unnormalized probabilities

How to minimize the loss function?

How to minimize the loss function?

In 1-dimension, the derivative of a function:

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

In multiple dimensions, the gradient is the vector of (partial derivatives).

current W:	$\mathbf{W}+\mathbf{h}$ (first dim):	gradient $\mathbf{d W}$:
$[0.34$,	$[0.34+\mathbf{0 . 0 0 0 1}$,	$[?$,
-1.11,	-1.11,	$?$,
0.78,	0.78,	$?$,
0.12,	0.12,	$?$,
0.55,	0.55,	$?$,
2.81,	2.81,	$?$,
-3.1,	-3.1,	$?$,
-1.5,	-1.5,	$?, \ldots]$
$0.33, \ldots]$	$0.33, \ldots]$	

current $\mathbf{W}:$	$\mathbf{W}+\mathbf{h}$ (first dim):
$[0.34$,	$[0.34+\mathbf{0 . 0 0 0 1}$,
-1.11,	-1.11,
0.78,	0.78,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
$0.33, \ldots]$	$0.33, \ldots]$
loss 1.25347	loss 1.25322

gradient dW:

current W:	$\mathbf{W}+\mathbf{h}$ (second dim):	gradient dW:
$[0.34$,	$[0.34$,	$[-2.5$,
-1.11,	$-1.11+\mathbf{0 . 0 0 0 1}$,	$?$,
0.78,	0.78,	$?$,
0.12,	0.12,	$?$,
0.55,	0.55,	$?$,
2.81,	2.81,	$?$,
-3.1,	-3.1,	$?$,
-1.5,	-1.5,	$?, \ldots]$
$0.33, \ldots]$	$0.33, \ldots]$	

current W:	$\mathbf{W}+\mathbf{h}$ (second dim):	gradient dW:
[0.34,	$[0.34$,	$[-2.5$,
-1.11,	$-1.11+\mathbf{0 . 0 0 0 1}$,	0.6,
0.78,	0.78,	$?$,
0.12,	0.12,	$?$,
0.55,	0.55,	$(1.25353-1.25347) / 0.0001$
2.81,	2.81,	$=0.6$
-3.1,	-3.1,	$\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
-1.5,	-1.5,	$?, \ldots]$
$0.33, \ldots]$	$0.33, \ldots]$	

current W:	$\mathbf{W}+\mathbf{h}$ (third dim):	gradient dW:
$[0.34$,	$[0.34$,	$[-2.5$,
-1.11,	-1.11,	0.6,
0.78,	$0.78+\mathbf{0 . 0 0 0 1}$,	$?$,
0.12,	0.12,	$?$,
0.55,	0.55,	$?$,
2.81,	2.81,	$?$,
-3.1,	-3.1,	$?$,
-1.5,	-1.5,	$?, \ldots]$
$0.33, \ldots]$	$0.33, \ldots]$	

This is silly. The loss is just a function of W:

$$
\begin{aligned}
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\sum_{k} W_{k}^{2} \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& s=f(x ; W)=W x
\end{aligned}
$$

want $\nabla_{W} L$

This is silly. The loss is just a function of W:

$$
\begin{aligned}
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\sum_{k} W_{k}^{2} \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& s=f(x ; W)=W x
\end{aligned}
$$

want $\nabla_{W} L$
Use Calculus!

$$
\nabla_{W} L=\ldots
$$

current \mathbf{W} :

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
$0.33, \ldots]$
loss 1.25347

gradient dW:

$\mathrm{dW}=\ldots$
(some function
data and W)

Loss gradients

- Denoted as (diff notations): $\frac{\partial E}{\partial r_{j}}$
$\nabla_{W} L$
- i.e. how the loss changes as a function of the weights
- We want to change the weights in such a way that makes the loss decrease as fast as possible

Gradient descent

- We'll update weights iteratively
- Move in direction opposite to gradient:

$$
\mathbf{w}_{\substack{\text { Time }}}^{(\tau+1)}=\mathbf{w}^{(\tau)}-\eta \nabla E\left(\mathbf{w}^{(\tau)}\right)
$$

Gradient descent

- Iteratively subtract the gradient with respect to the model parameters (w)
- i.e. we're moving in a direction opposite to the gradient of the loss
- i.e. we're moving towards smaller loss

Mini-batch gradient descent

- In classic gradient descent, we compute the gradient from the loss for all training examples (can be slow)
- So, use only use some of the data for each gradient update
- We cycle through all the training examples multiple times
- Each time we've cycled through all of them once is called an 'epoch'

Learning rate selection

Questions?

See you Wednesday!

