Convolutional neural networks II

September 30th, 2019

Yong Jae Lee UC Davis

Many slides from Rob Fergus, Svetlana Lazebnik, Jia-Bin Huang, Derek Hoiem, Adriana Kovashka, Andrej Karpathy

Announcements

• Sign-up for paper presentations

Standard classifiers

Deep neural networks

- Lots of hidden layers
- Depth = power (usually)

How do we train them?

- The goal is to iteratively find a set of weights that allow the activations/outputs to match the desired output
- For this, we will *minimize a loss function*
- The loss function quantifies the agreement between the predicted scores and GT labels

• First, let's simplify and assume we have a single layer of weights in the network

Classification goal

airplane
automobi
bird
cat
deer
dog

frog horse ship

truck

Example dataset: CIFAR-10 10 labels **50,000** training images each image is 32x32x3 10,000 test images.

Classification scores

$$f(x,W) = Wx + b$$

 $f(x,W)$ 10

10 numbers, indicating class scores

[32x32x3] array of numbers 0...1 (3072 numbers total)

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

TODO:

- 1. Define a **loss function** that quantifies our unhappiness with the scores across the training data.
- Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Hinge loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Want: $s_{y_i} \ge s_j + 1$ i.e. $s_j - s_{y_i} + 1 \le 0$

If true, loss is 0 If false, loss is magnitude of violation

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

Hinge loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the loss has the form:

$$\begin{split} L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\ &= \max(0, 5.1 - 3.2 + 1) \\ &+ \max(0, -1.7 - 3.2 + 1) \\ &= \max(0, 2.9) + \max(0, -3.9) \\ &= 2.9 + 0 \\ &= 2.9 \end{split}$$

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

Hinge loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the loss has the form:

$$\begin{split} L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\ &= \max(0, 1.3 - 4.9 + 1) \\ &+ \max(0, 2.0 - 4.9 + 1) \\ &= \max(0, -2.6) + \max(0, -1.9) \\ &= 0 + 0 \\ &= 0 \end{split}$$

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

Hinge loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the loss has the form:

$$\begin{split} L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\ &= \max(0, 2.2 - (-3.1) + 1) \\ &+ \max(0, 2.5 - (-3.1) + 1) \\ &= \max(0, 5.3 + 1) \\ &+ \max(0, 5.6 + 1) \\ &= 6.3 + 6.6 \\ &= 12.9 \end{split}$$

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Loss:	2.9	0	12.9

Hinge loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

and the full training loss is the mean over all examples in the training data:

$$L = rac{1}{N} \sum_{i=1}^N L_i$$

L = (2.9 + 0 + 12.9)/3 = 15.8 / 3 = **5.3**

f(x,W) = Wx

 $L = rac{1}{N} \sum_{i=1}^{N} \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$

Weight Regularization

 λ = regularization strength (hyperparameter)

 $L=rac{1}{N}\sum_{i=1}^N\sum_{j
eq y_i} \max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)+\lambda R(W)$

In common use: L2 regularization L1 regularization Dropout

 $egin{aligned} R(W) &= \sum_k \sum_l W_{k,l}^2 \ R(W) &= \sum_k \sum_l |W_{k,l}| \end{aligned}$

Another loss: Softmax (cross-entropy)

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $oldsymbol{s}=f(x_i;W)$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y=y_i|X=x_i)$$

cat

car

frog

5.1 -1.7

3.2

Another loss: Softmax (cross-entropy)

Adapted from Andrej Karpathy

How to minimize the loss function?

Andrej Karpathy

How to minimize the loss function?

In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the gradient is the vector of (partial derivatives).

current W:	
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25347	

gradient dW:

current W:	W + h (first dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	[0.34 + 0.0001, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	[?, ?, ?, ?, ?, ?, ?, ?, ?,]

current W:	W + h (first dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25347	[0.34 + 0.0001 , -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25322	$[-2.5, ?, ?, ?, ?, ?, ?, ?, ?, ?,]$ $(1.25322 - 1.25347)/0.0001 = -2.5$ $\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$?, ?,]

current W:	W +
[0.34, -1.11,	[0.34
0.78,	0.78,
0.12, 0.55,	0.12, 0.55,
2.81, -3.1,	2.81, -3.1,
-1.5, 0.33,…]	-1.5, 0.33,
loss 1.25347	loss

h (second dim): Ŧ, + 0.0001, ', , ', , ,... 1.25353

gradient dW:

current W:	W
[0.34,	[0]
-1.11,	-1
0.78,	0.
0.12,	0.
0.55,	0.
2.81,	2.
-3.1,	-3
-1.5,	-1
0.33,]	0.
loss 1.25347	lo

+ h (second dim): .34, .11 + **0.0001**, 78, 12, 55, .81, .1, .5, .33,...] ss 1.25353

current W:	W + h (third dim):
[0.34,	[0.34,
-1.11,	-1.11,
0.78,	0.78 + 0.0001 ,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25347

```
gradient dW:
```

[-2.5, 0.6, ?, ?, ?, ?, ?, ?, ?, ?,

This is silly. The loss is just a function of W:

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= f(x; W) = Wx \end{aligned}$$

want $\nabla_W L$

This is silly. The loss is just a function of W:

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= f(x; W) = Wx \end{aligned}$$

want $\nabla_W L$

Use Calculus!

$$\nabla_W L = \dots$$

Andrej Karpathy

current W:		gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25347	dW = (some function data and W)	[-2.5, 0.6, 0, 0.2, 0.7, -0.5, 1.1, 1.3, -2.1,]

Loss gradients

- Denoted as (diff notations): $\frac{\partial E}{\partial E} = \nabla_W L$
- i.e. how the loss changes as a function of the weights
- We want to change the weights in such a way that makes the loss decrease as fast as possible

Gradient descent

- We'll update weights iteratively
- Move in direction opposite to gradient:

$$\mathbf{w}^{(\tau+1)}_{\uparrow} = \mathbf{w}^{(\tau)} - \eta \nabla E(\mathbf{w}^{(\tau)})$$

$$\uparrow_{\text{Learning rate}}$$

Gradient descent

- Iteratively *subtract* the gradient with respect to the model parameters (w)
- i.e. we're moving in a direction opposite to the gradient of the loss
- i.e. we're moving towards *smaller* loss

Mini-batch gradient descent

- In classic gradient descent, we compute the gradient from the loss for all training examples (can be slow)
- So, use only use *some* of the data for each gradient update
- We cycle through all the training examples multiple times
- Each time we've cycled through all of them once is called an 'epoch'

Learning rate selection

Andrej Karpathy

Questions?

See you Wednesday!