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Announcements	
•  Sign-up	for	paper	presentations	

2	



Standard classifiers 

106 examples 

Nearest neighbor 

Shakhnarovich, Viola, Darrell 2003 
Berg, Berg, Malik 2005... 

Neural networks 

LeCun, Bottou, Bengio, Haffner 1998 
Rowley, Baluja, Kanade 1998 
… 
 
 Support Vector Machines Conditional Random Fields 

McCallum, Freitag, Pereira 
2000; Kumar, Hebert 2003 
… 

Guyon, Vapnik 
Heisele, Serre, Poggio, 
2001,… 

Slide adapted from Antonio Torralba 

Boosting 

Viola, Jones 2001, 
Torralba et al. 2004, 
Opelt et al. 2006,… 
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Deep	neural	networks	
•  Lots	of	hidden	layers	
•  Depth	=	power	(usually)	

Figure from http://neuralnetworksanddeeplearning.com/chap5.html  
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How	do	we	train	them?		
•  The	goal	is	to	iteratively	find	a	set	of	weights	

that	allow	the	activations/outputs	to	match	
the	desired	output	

•  For	this,	we	will	minimize	a	loss	function			
•  The	loss	function	quantifies	the	agreement	

between	the	predicted	scores	and	GT	labels	

•  First,	let’s	simplify	and	assume	we	have	a	
single	layer	of	weights	in	the	network		



Classification	goal	

Example dataset: CIFAR-10  
10 labels 
50,000 training images  

each image is 32x32x3 
10,000 test images. 

Andrej Karpathy 



Classification	scores	

[32x32x3] 
array of numbers 0...1  
(3072 numbers total) 

f(x,W) 
image parameters 

10 numbers,  
indicating class  
scores 

Andrej Karpathy 

+ b 



Linear	classifier		

[32x32x3] 
array of numbers 0...1 

10 numbers,  
indicating class  
scores 

3072x1 

10x1 10x3072 

parameters, or “weights” 

+b 10x1 

Andrej Karpathy 



Linear	classifier		

Example	with	an	image	with	4	pixels,	and	3	classes	(cat/dog/ship)	

Andrej Karpathy 



Linear	classifier		

-3.45 
-8.87 
0.09 
2.9 
4.48 
8.02 

3.78 
1.06 

-0.36 
-0.72 

-0.51 
6.04 
5.31 
-4.22 

-4.19 
3.58 

4.49 
-4.37 

-2.09 
-2.93 

3.42 
4.64 

2.65 
5.1 

2.64 
5.55 

-4.34 
-1.5 

-4.79 
6.14 

1.  Define a loss function  
that quantifies our  
unhappiness with the  
scores across the training  
data. 

2.  Come up with a way of  
efficiently finding the  
parameters that minimize  
the loss function.  
(optimization) 

TODO: 

Andrej Karpathy 



Linear	classifier		
Suppose: 3 training examples, 3 classes.  
With some W the scores are: 

c a t  

c a r  

frog 

3.2 
5.1 
-1.7 

1.3 
4.9 
2.0 

2.2 
2.5 

-3.1 

Adapted from Andrej Karpathy 



Linear	classifier:	Hinge	loss		
Suppose: 3 training examples, 3 classes.  
With some W the scores are: 

c a t  

c a r  

frog 

3.2 
5.1 
-1.7 

1.3 
4.9 
2.0 

2.2 
2.5 

-3.1 

Hinge loss: 

Given an example 
where  
where 

is the image and 
is the (integer) label, 

and using the shorthand for the  
scores vector: 

the loss has the form: 

Adapted from Andrej Karpathy 

Want: syi >= sj + 1 
i.e. sj – syi + 1 <= 0 
 
If true, loss is 0 
If false, loss is magnitude of violation 



Linear	classifier:	Hinge	loss		
Suppose:	3	training	examples,	3	classes.		
With	some	W	the	scores	 are: 

Hinge loss: 

Given an example 
where  
where 

is the image and 
is the (integer) label, 

and using the shorthand for the  
scores vector: 
 
 
the loss has the form: 

= max(0, 5.1 - 3.2 + 1) 
+max(0, -1.7 - 3.2 + 1) 

= max(0, 2.9) + max(0, -3.9) 
= 2.9 + 0 
= 2.9 

cat 

car  

frog 

3.2 
5.1 
-1.7 

1.3  2.2 
4.9  2.5 
2.0  -3.1 

Loss: 2.9 

Adapted from Andrej Karpathy 



Linear	classifier:	Hinge	loss		
Suppose:	3	training	examples,	3	classes.		
With	some	W	the	scores	 are: 

Hinge loss: 

Given an example 
where  
where 

is the image and 
is the (integer) label, 

and using the shorthand for the  
scores vector: 
 
 
the loss has the form: 

= max(0, 1.3 - 4.9 + 1) 
+max(0, 2.0 - 4.9 + 1) 

= max(0, -2.6) + max(0, -1.9) 
= 0 + 0 
= 0 

cat  3.2 
car  5.1 
frog  -1.7 

1.3 
4.9 
2.0 

2.2 
2.5 

-3.1 
Loss:  2.9 0 

Adapted from Andrej Karpathy 



Linear	classifier:	Hinge	loss		
Suppose:	3	training	examples,	3	classes.		
With	some	W	the	scores	 are: 

Hinge loss: 

Given an example 
where  
where 

is the image and 
is the (integer) label, 

and using the shorthand for the  
scores vector: 
 
 
the loss has the form: 

= max(0, 2.2 - (-3.1) + 1) 
+max(0, 2.5 - (-3.1) + 1) 

= max(0, 5.3 + 1)  
   + max(0, 5.6 + 1) 
= 6.3 + 6.6 
= 12.9 

cat 

car  

frog 

3.2 
5.1 
-1.7 

1.3 
4.9 
2.0 

2.2 
2.5 

-3.1 
Loss: 2.9 0 12.9 

Adapted from Andrej Karpathy 



Linear	classifier:	Hinge	loss		

c a t  

c a r  

frog 

3.2 
5.1 
-1.7 

1.3 
4.9 
2.0 

2.2 
2.5 

-3.1 

Suppose: 3 training examples, 3 classes.  
With some W the scores are: 

Hinge loss: 

Given an example 
where  
where 

is the image and 
is the (integer) label, 

and using the shorthand for the  
scores vector: 

the loss has the form: 

and the full training loss is the mean  
over all examples in the training data: 

L = (2.9 + 0 + 12.9)/3 
2.9 0 12.9 Loss: = 15.8 / 3 = 5.3 

Lecture 3 - 12 

Adapted from Andrej Karpathy 



Linear	classifier:	Hinge	loss		

Adapted from Andrej Karpathy 



Linear	classifier:	Hinge	loss		
Weight Regularization 

λ	=	regularization	strength		
(hyperparameter)	

In common use:  
L2 regularization  
L1 regularization 
Dropout 

Adapted from Andrej Karpathy 



Want to maximize the log likelihood, or (for a loss function)  
to minimize the negative log likelihood of the correct class: c a t  

c a r  

frog 

3.2 
5.1 
-1.7 

scores = unnormalized log probabilities of the classes. 
 

where 

Another	loss:	Softmax	(cross-entropy)	

Andrej Karpathy 



c a t  

c a r  

frog 

unnormalized log probabilities 

24.5 
164.0 
0.18 

3.2 
5.1 
-1.7 

 

exp normalize 

unnormalized probabilities 

0.13 
0.87 
0.00 

probabilities 

L_i = -log(0.13) 
= 0.89 

Another	loss:	Softmax	(cross-entropy)	

Adapted from Andrej Karpathy 



How	to	minimize	the	loss	function?		

Andrej Karpathy 



How	to	minimize	the	loss	function?		

In 1-dimension, the derivative of a function: 

In multiple dimensions, the gradient is the vector of (partial derivatives). 

Andrej Karpathy 



current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…] 
loss 1.25347 

gradient dW: 

[?, 
?, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…] 

Andrej Karpathy 



current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…] 
loss 1.25347 

W + h (first dim): 

[0.34 + 0.0001, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…] 
loss 1.25322 

gradient dW: 

[?, 
?, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…] 

Andrej Karpathy 



gradient dW: 

[-2.5, 
?, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…] 

(1.25322 - 1.25347)/0.0001 
= -2.5 

current	W:	

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…] 
loss 1.25347 

W + h (first dim): 

[0.34 + 0.0001, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…] 
loss 1.25322 

Andrej Karpathy 



gradient dW: 

[-2.5, 
?, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…] 

current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…] 
loss 1.25347 

W + h (second dim): 

[0.34, 
-1.11 + 0.0001, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…] 
loss 1.25353 

Andrej Karpathy 



gradient dW: 

[-2.5, 
0.6, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…] 

current	W:	

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…] 
loss 1.25347 

W + h (second dim): 

[0.34, 
-1.11 + 0.0001, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…] 
loss 1.25353 

(1.25353 - 1.25347)/0.0001 
= 0.6 

Andrej Karpathy 



gradient dW: 

[-2.5, 
0.6, 
?, 
?, 
?, 
?, 
?, 
?, 
?,…] 

current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…] 
loss 1.25347 

W + h (third dim): 

[0.34, 
-1.11, 
0.78 + 0.0001, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…] 
loss 1.25347 

Andrej Karpathy 



want 

Andrej Karpathy 

This	is	silly.	The	loss	is	just	a	function	of	W:	



This	is	silly.	The	loss	is	just	a	function	of	W:	

want 
 

   Use Calculus! 
= ... 

Andrej Karpathy 



gradient dW: 

[-2.5, 
0.6, 
0, 
0.2, 
0.7, 
-0.5, 
1.1, 
1.3, 
-2.1,…] 

current W: 

[0.34, 
-1.11, 
0.78, 
0.12, 
0.55, 
2.81, 
-3.1, 
-1.5, 
0.33,…] 
loss 1.25347 

dW = ... 
(some function  
data and W) 

Andrej Karpathy 



Loss	gradients	
•  Denoted	as	(diff	notations):	

•  i.e.	how	the	loss	changes	as	a	function	of	the	
weights	

•  We	want	to	change	the	weights	in	such	a	way	
that	makes	the	loss	decrease	as	fast	as	
possible			



Gradient	descent	
•  We’ll	update	weights	iteratively	
•  Move	in	direction	opposite	to	gradient:	

L
Learning rate 

Time 

Figure from Andrej Karpathy 

original W 
negative gradient direction 

W_1 

W_2 

loss function landscape 



Gradient	descent	
•  Iteratively	subtract	the	gradient	with	respect	

to	the	model	parameters	(w)	
•  i.e.	we’re	moving	in	a	direction	opposite	to	

the	gradient	of		the	loss	
•  i.e.	we’re	moving	towards	smaller	loss	



Mini-batch	gradient	descent	
•  In	classic	gradient	descent,	we	compute	the	

gradient	from	the	loss	for	all	training	
examples	(can	be	slow)	

•  So,	use	only	use	some	of	the	data	for	each	
gradient	update	

•  We	cycle	through	all	the	training	examples	
multiple	times		

•  Each	time	we’ve	cycled	through	all	of	them	
once	is	called	an	‘epoch’	



Andrej Karpathy 

Learning	rate	selection	

The	effects	of	step	size	(or	“learning	rate”)	



Questions?	

See	you	Wednesday!	
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