Convolutional neural networks III

October 2nd, 2019

Yong Jae Lee UC Davis

Many slides from Rob Fergus, Svetlana Lazebnik, Jia-Bin Huang, Derek Hoiem, Adriana Kovashka, Andrej Karpathy

Announcements

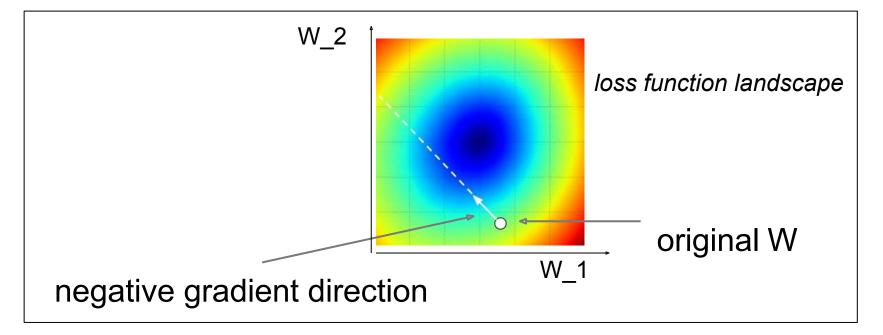
- Sign-up for paper presentations
- First paper review due Thurs 11:59 PM

Gradient descent

- We'll update weights iteratively
- Move in direction opposite to gradient:

$$\mathbf{w}^{(\tau+1)}_{\uparrow} = \mathbf{w}^{(\tau)} - \eta \nabla E(\mathbf{w}^{(\tau)})$$

$$\uparrow_{\text{Learning rate}}$$



Gradient descent in multi-layer nets

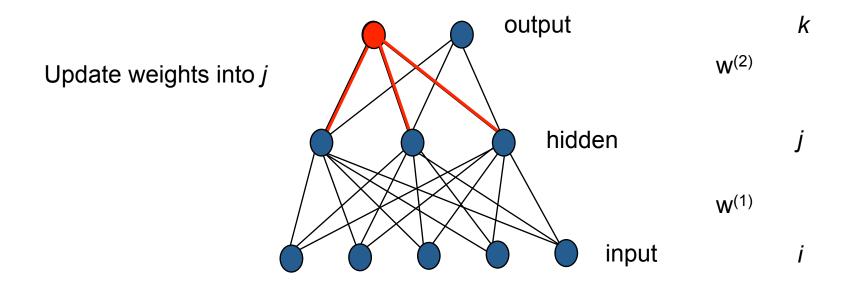
- We'll update weights
- Move in direction opposite to gradient:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E(\mathbf{w}^{(\tau)})$$

- How to update the weights at all layers?
- Answer: backpropagation of loss from higher layers to lower layers

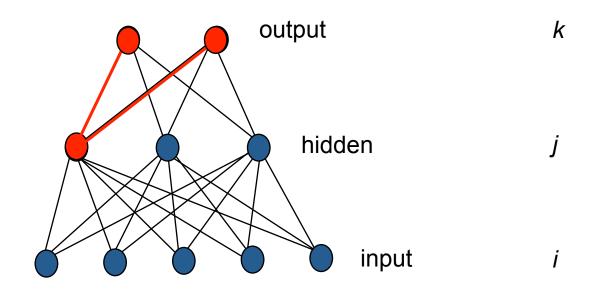
Backpropagation: Graphic example

• First calculate error of output units and use this to change the top layer of weights.



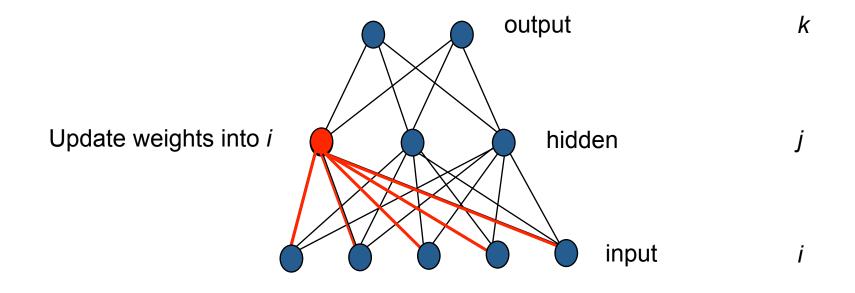
Backpropagation: Graphic example

• Next calculate error for hidden units based on errors on the output units it feeds into.



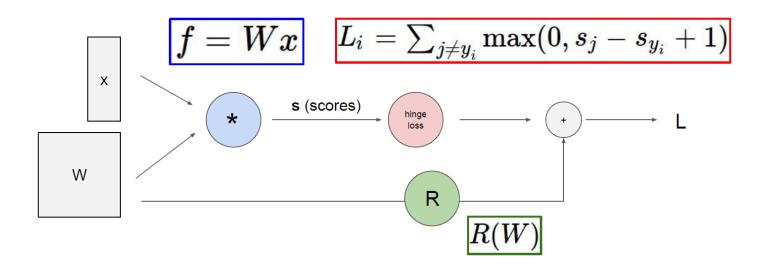
Backpropagation: Graphic example

• Finally update bottom layer of weights based on errors calculated for hidden units.



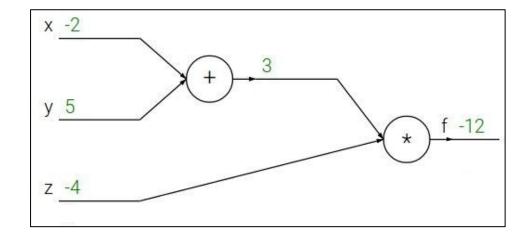
Backpropagation

 Easier if we use *computational graphs*, especially when we have complicated functions typical in deep neural networks



$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4



$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y \qquad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

f -12

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y \qquad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

$$\frac{\partial f}{\partial f}$$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y \qquad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

$$\frac{\partial f}{\partial f}$$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y \qquad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

$$\frac{\partial f}{\partial z}$$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y \qquad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

$$\frac{\partial f}{\partial z}$$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y \qquad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

$$\frac{\partial f}{\partial q}$$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y \qquad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

$$\frac{\partial f}{\partial q}$$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x, y, z) = (x + y)z$$

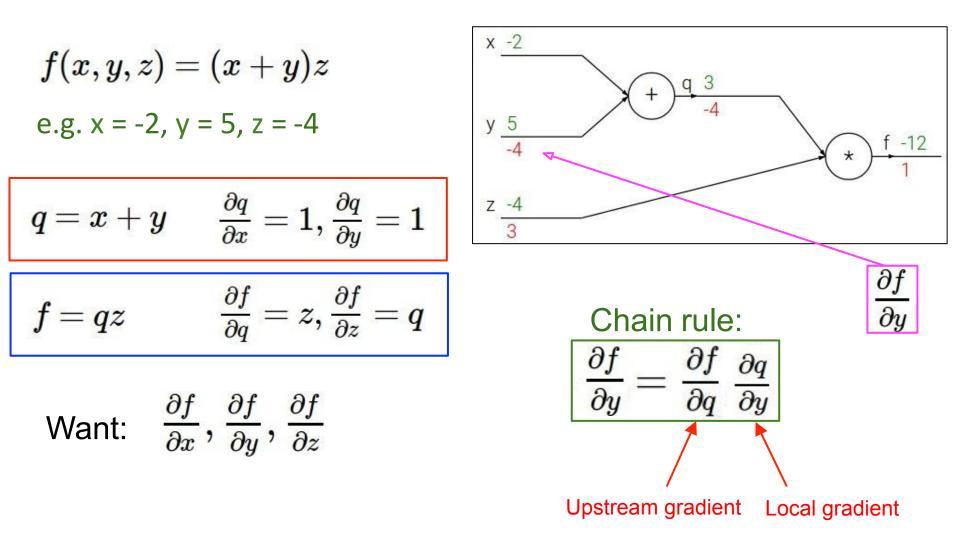
e.g. x = -2, y = 5, z = -4

$$q = x + y \qquad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

$$\frac{\partial f}{\partial y}$$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$



$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y \qquad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

$$\frac{\partial f}{\partial x}$$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x, y, z) = (x + y)z$$

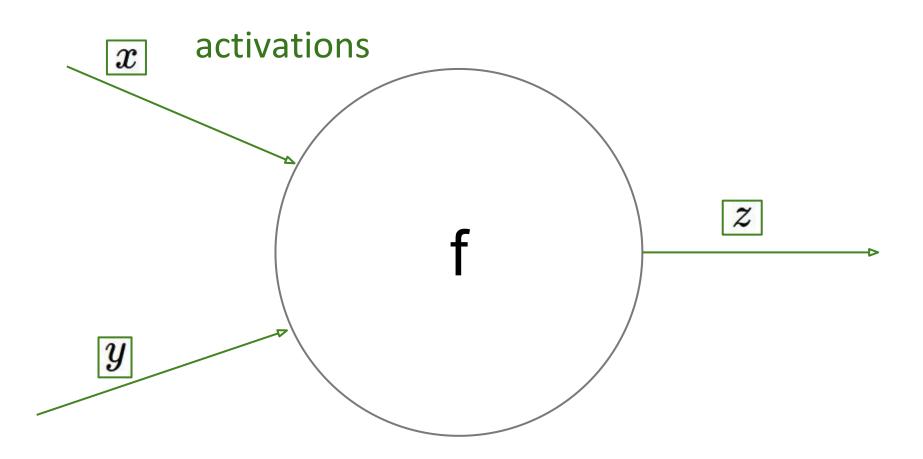
e.g. $x = -2, y = 5, z = -4$

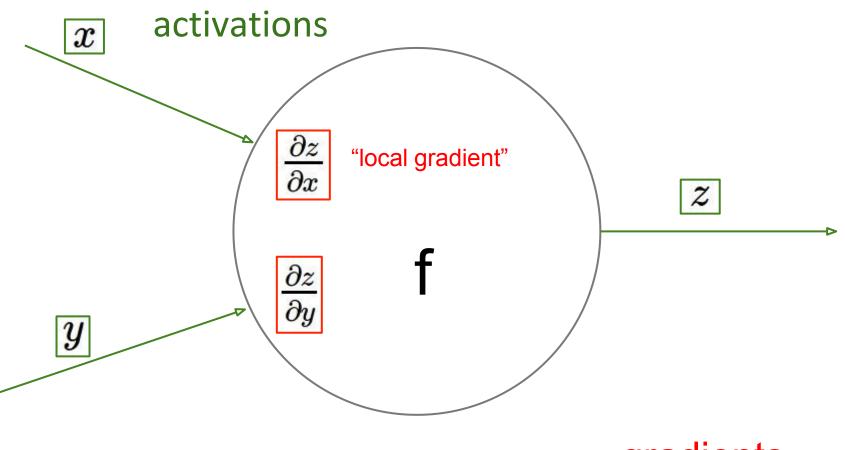
$$q = x + y \quad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \qquad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

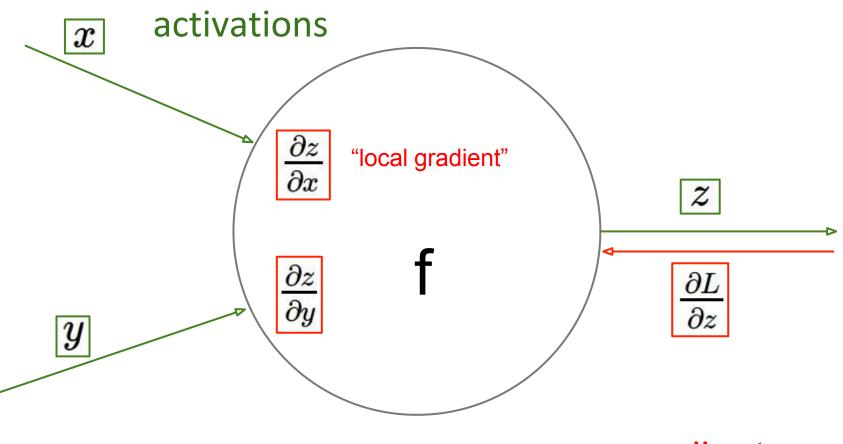
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$x = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

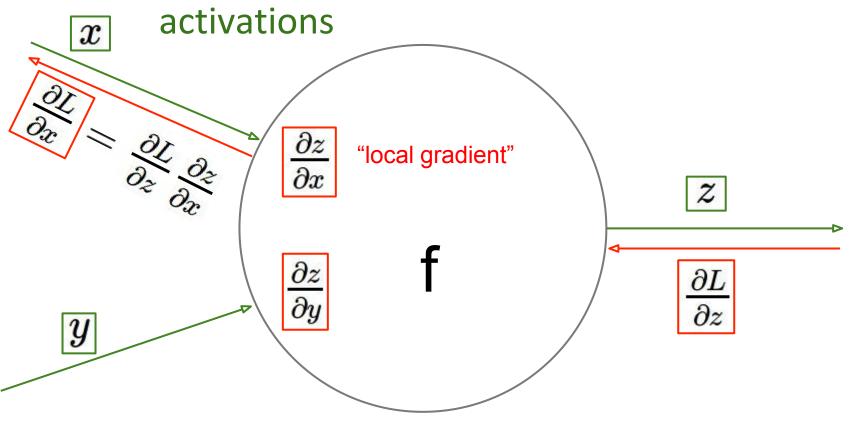




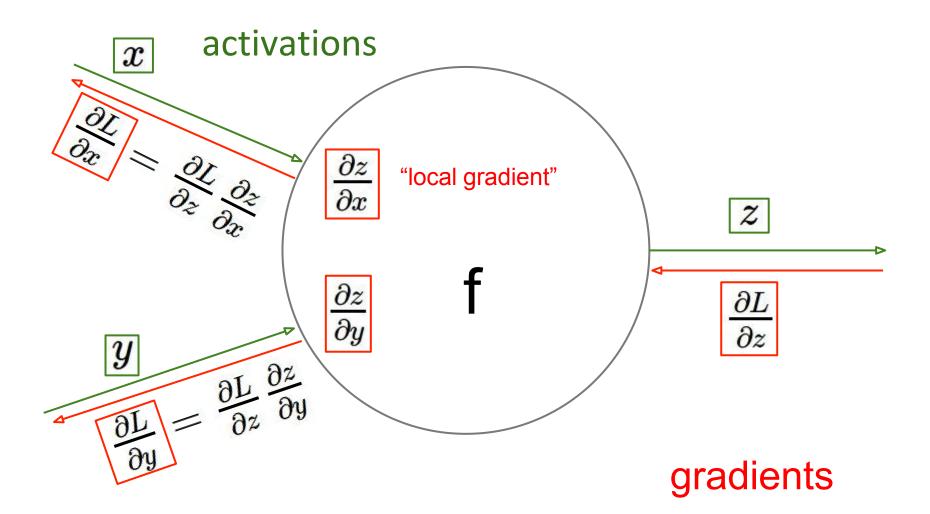
gradients

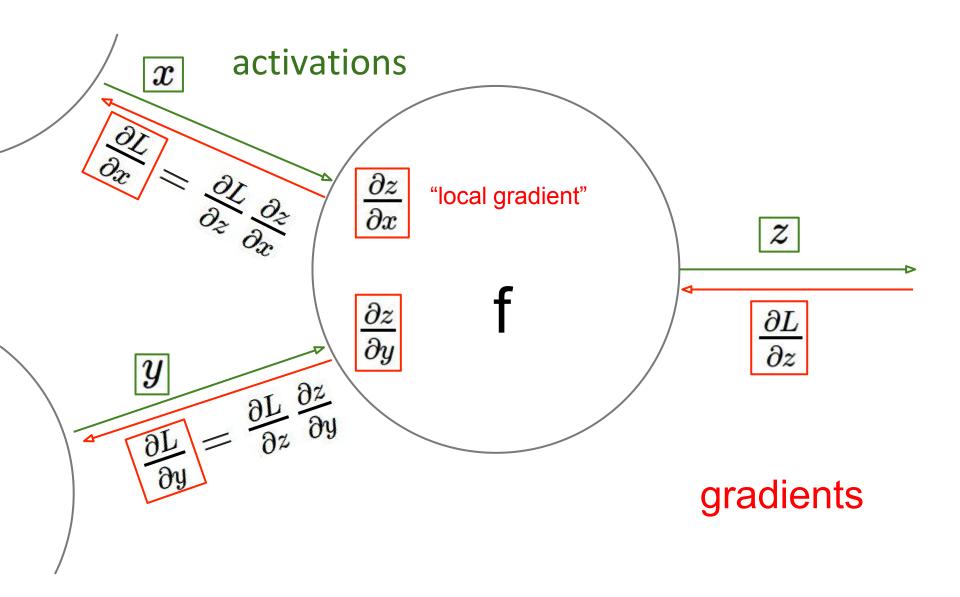


gradients

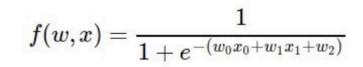


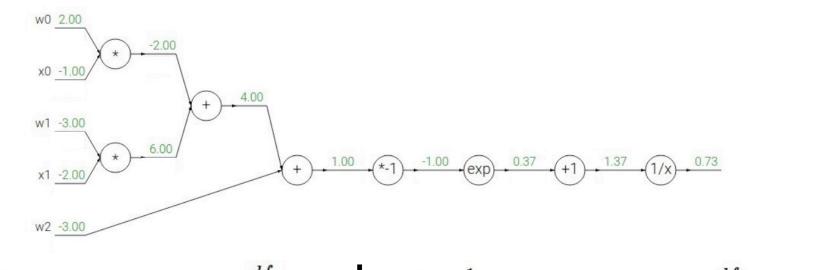
gradients





Backpropagation: another example

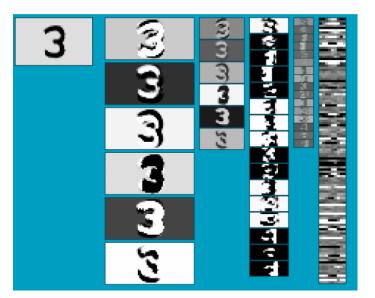


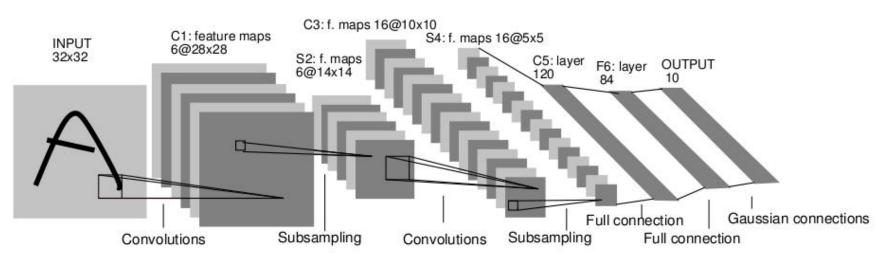


$$egin{array}{rll} f(x)=e^x &
ightarrow & \displaystyle rac{df}{dx}=e^x & f(x)=\displaystyle rac{1}{x} &
ightarrow & \displaystyle rac{df}{dx}=-1/x^2 & \ f_a(x)=ax &
ightarrow & \displaystyle rac{df}{dx}=a & \displaystyle f_c(x)=c+x &
ightarrow & \displaystyle rac{df}{dx}=1 & \end{array}$$

Convolutional Neural Networks (CNN)

- Neural network with specialized connectivity structure
- Stack multiple stages of feature extractors
- Higher stages compute more global, more invariant, *more abstract* features
- Classification layer at the end



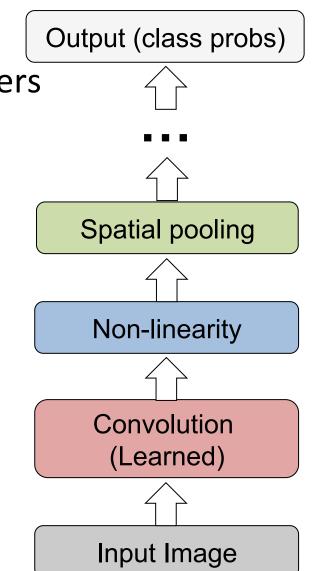


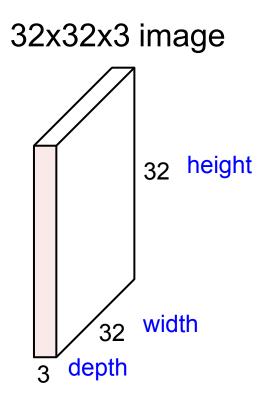
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,

<u>Gradient-based learning applied to document recognition</u>, Proceedings of the IEEE 86(11): Adapted from Rob Fergus

Convolutional Neural Networks (CNN)

- Feed-forward feature extraction:
 - 1. Convolve input with learned filters
 - 2. Apply non-linearity
 - 3. Spatial pooling (downsample)
- Supervised training of convolutional filters by back-propagating classification error



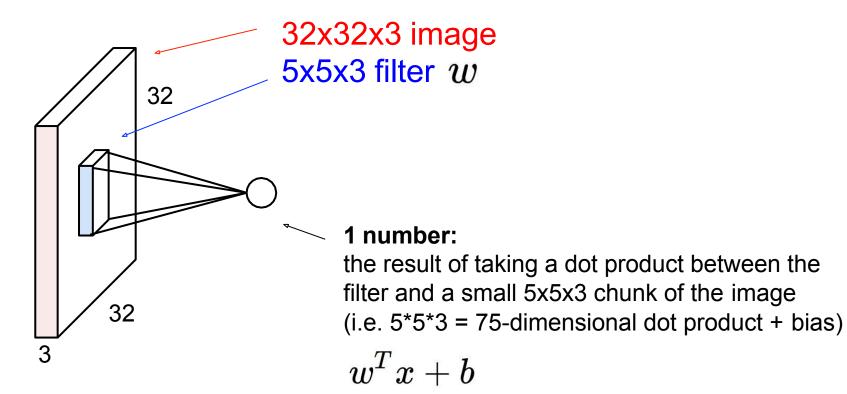


32x32x3 image 32x32x3 image 32x32x3 image

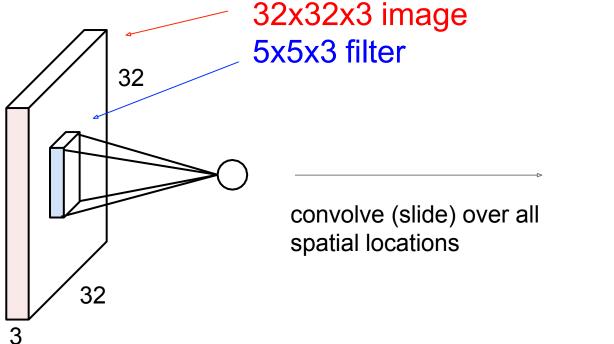
5x5x3 filter

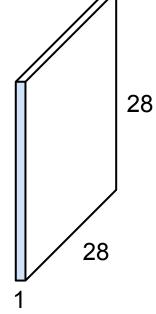
Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer



Convolution Layer





Convolution Layer

32x32x3 image 5x5x3 filter convolve (slide) over all spatial locations

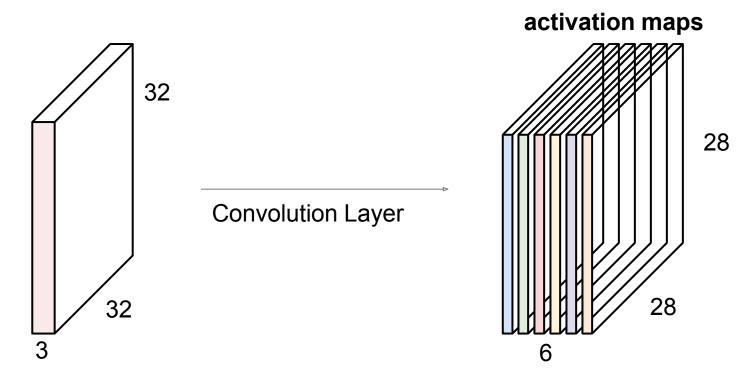
activation maps

28

28

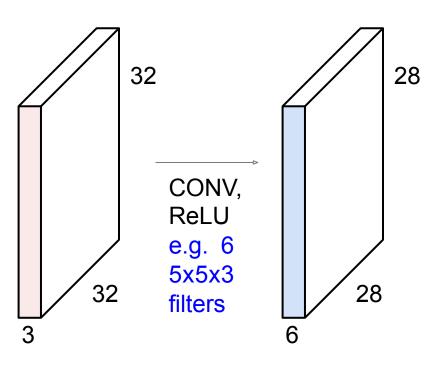
consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:



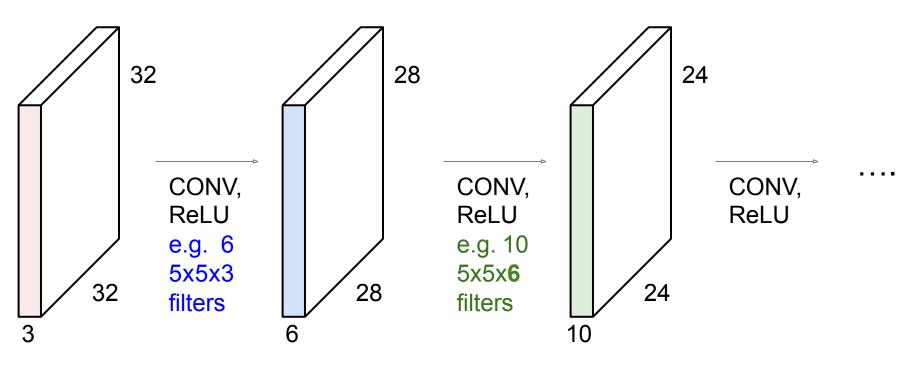
We stack these up to get a "new image" of size 28x28x6!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions



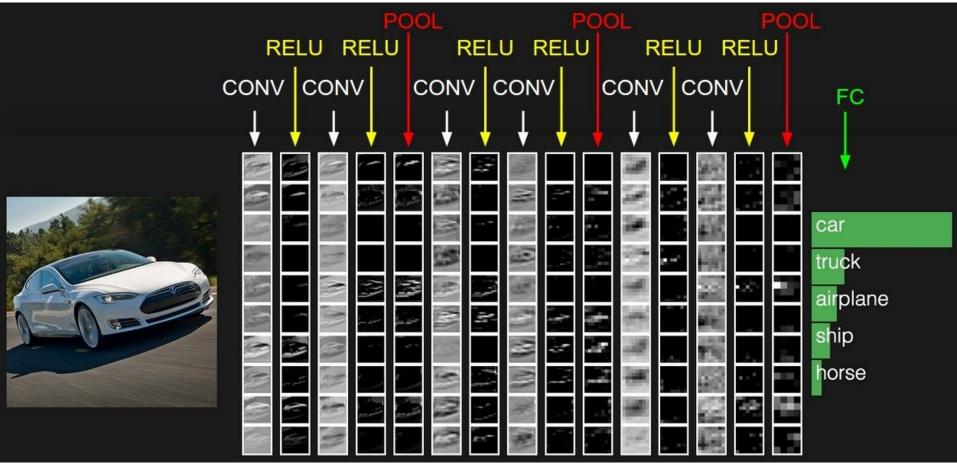
Convolutions: More detail

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions



Convolutions: More detail

preview:



A Common Architecture: AlexNet

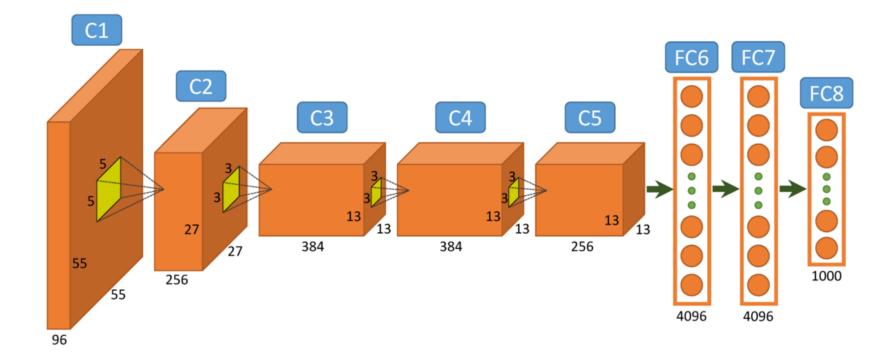


Figure from http://www.mdpi.com/2072-4292/7/11/14680/htm

Case Study: VGGNet

		ConvNet C	onfiguration		
A	A-LRN	В	С	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i	nput (224×2	24 RGB imag	:)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
			pool	a and a second	
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
	111111	max	pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-250	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-250
	23 - 23	max	pool	2	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
	and a second		conv1-512	conv3-512	conv3-512
					conv3-512
		max	pool	2001 LOS 000 10-10-1	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
		7.3.5.51555	pool		
			4096		
			4096		
			1000		
		soft	-max		

[Simonyan and Zisserman, 2014]

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

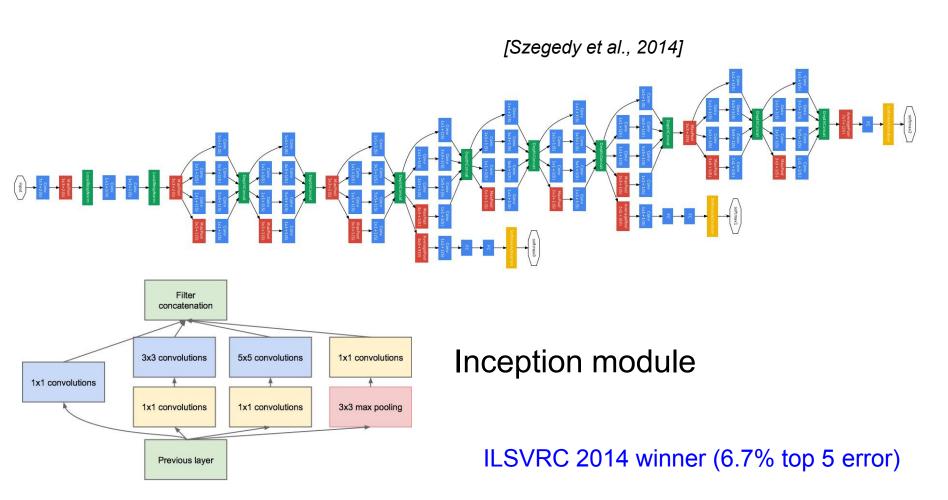
best model

11.2% top 5 error in ILSVRC 2013 -> 7.3% top 5 error

Table 2: Number of parameters (in millions).

Network	A,A-LRN	B	C	D	E
Number of parameters	133	133	134	138	144

Case Study: GoogLeNet

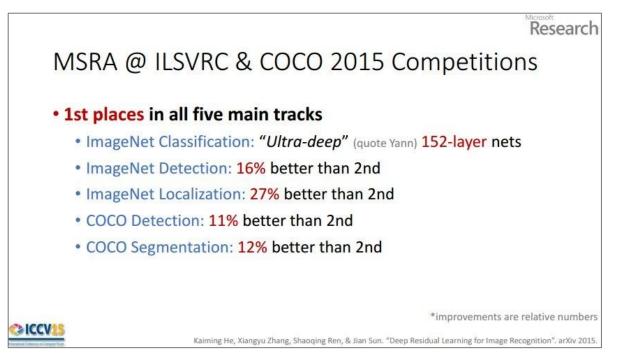


Andrej Karpathy

Case Study: ResNet

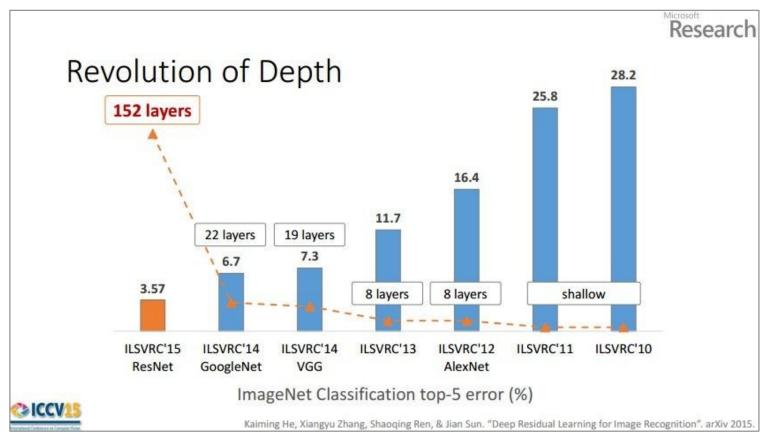
[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)



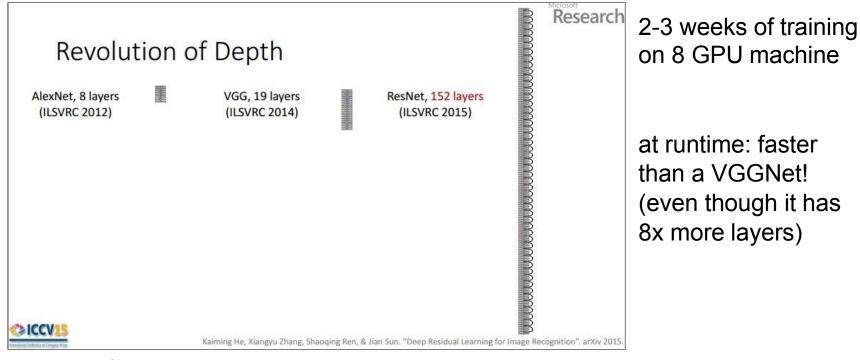
Slide from Kaiming He's presentation https://www.youtube.com/watch?v=1PGLj-uKT1w

Case Study: ResNet



(slide from Kaiming He's presentation)

Case Study: ResNet



(slide from Kaiming He's presentation)

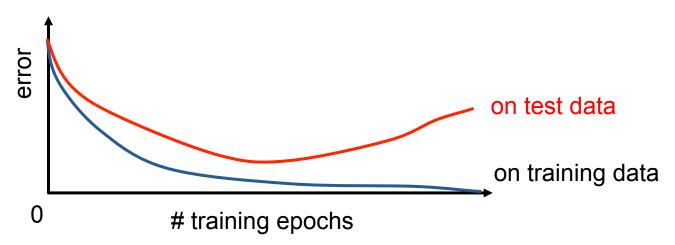
Practical matters

Comments on training algorithm

- Not guaranteed to converge to zero training error, may converge to local optima or oscillate indefinitely.
- However, in practice, does converge to low error for many large networks on real data.
- Thousands of epochs (epoch = network sees all training data once) may be required, hours or days to train.
- To avoid local-minima problems, run several trials starting with different random weights (*random restarts*), and take results of trial with lowest training set error.
- May be hard to set learning rate and to select number of hidden units and layers.
- Neural networks had fallen out of fashion in 90s, early 2000s; back with a new name and significantly improved performance (deep networks trained with dropout and lots of data).

Over-training prevention

• Running too many epochs can result in over-fitting.



• Keep a hold-out validation set and test accuracy on it after every epoch. Stop training when additional epochs actually increase validation error.

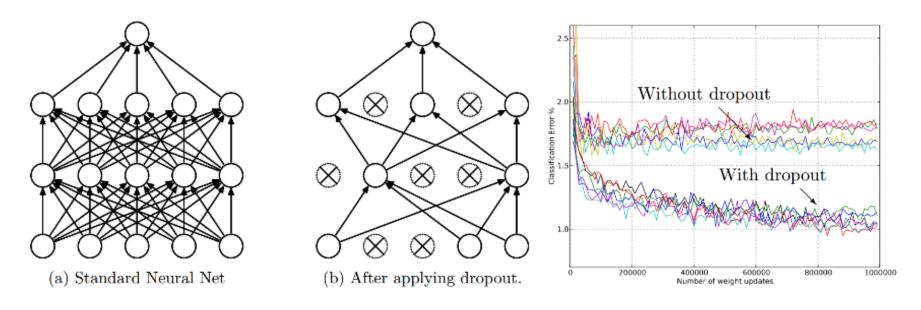
Training: Best practices

- Use mini-batch
- Use regularization
- Use cross-validation for your parameters
- Use RELU or leaky RELU, don't use sigmoid
- Center (subtract mean from) your data
- Learning rate: too high? too low?
- Use BatchNorm

Data Augmentation (Jittering)

- Create *virtual* training samples
 - Horizontal flip
 - Random crop
 - Color casting
 - Geometric distortion

Regularization: Dropout



- Randomly turn off some neurons
- Allows individual neurons to independently be responsible for performance

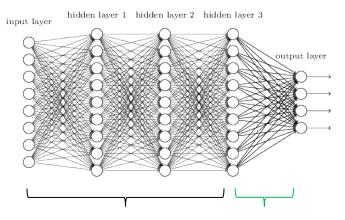
Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

Adapted from Jia-bin Huang

Transfer Learning

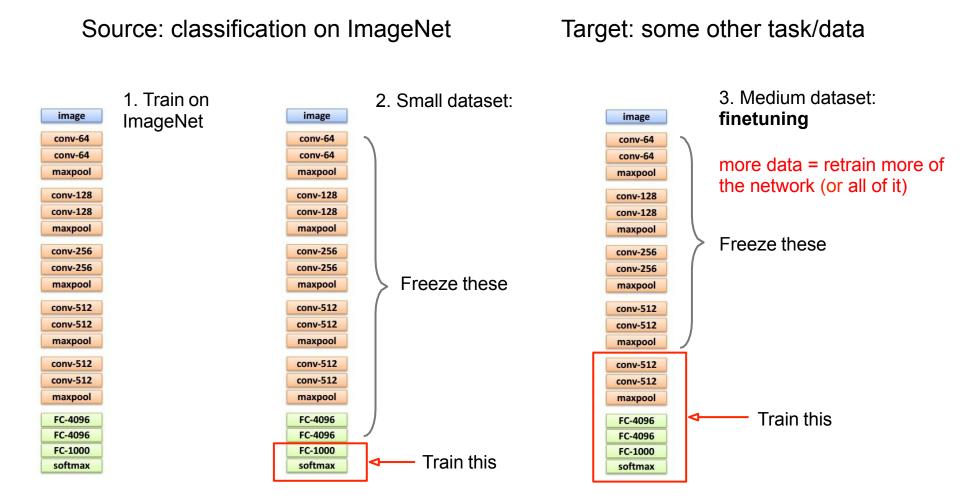
Transfer Learning with CNNs

- The more weights you need to learn, the more data you need
- That's why with a deeper network, you need more data for training than for a shallower network
- One possible solution:

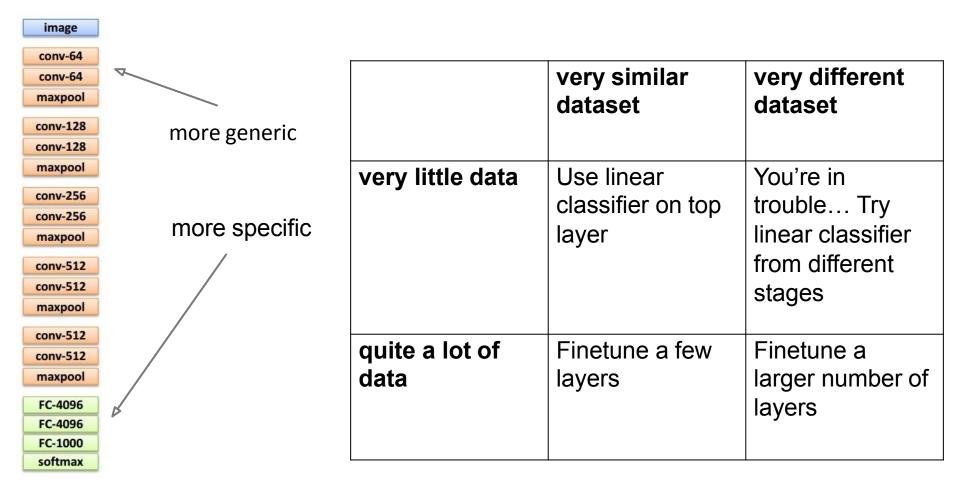


Set these to the already learned Learn these on your own task weights from another network

Transfer Learning with CNNs



Transfer Learning with CNNs



Summary

- We use deep neural networks because of their strong performance in practice
- Convolutional neural networks (CNN)
 - Convolution, nonlinearity, max pooling
- Training deep neural nets
 - We need an objective function that measures and guides us towards good performance
 - We need a way to minimize the loss function: stochastic gradient descent
 - We need backpropagation to propagate error through all layers and change their weights
- Practices for preventing overfitting
 - Dropout; BatchNorm; data augmentation; transfer learning

Questions?

See you Friday!