Plan for today

• Topic overview
• Course requirements and administrivia
• Introductions
• Syllabus tour
Computer Vision

• Let computers see!
• Automatic understanding of visual data (i.e., images and video)

 – Computing properties of the 3D world from visual data (*measurement*)

 – Algorithms and representations to allow a machine to recognize objects, people, scenes, and activities (*perception and interpretation*)
What does recognition involve?
Detection: are there people?
Activity: What are they doing?
Object categorization

- mountain
- tree
- building
- banner
- street lamp
- vendor
- people
Instance recognition

Potala Palace

A particular sign
Scene categorization

• outdoor
• city
• …
Attribute recognition

- Gray
- Made of fabric
- Crowded
- Flat
Why recognition?

• Recognition a fundamental part of perception
 • e.g., robots, autonomous agents

• Organize and give access to visual content
 • Connect to information
 • Detect trends and themes
Posing visual queries

Digital Field Guides Eliminate the Guesswork

Yeh et al., MIT

Belhumeur et al.

Kooaba, Bay & Quack et al.

Kristen Grauman
Finding visually similar objects
Interactive systems

Shotton et al.
Autonomous agents

Mars rover

Google self-driving car
Discovering visual patterns

Actions

Wang et al.

Categories

Lee & Grauman

Characteristic elements

Doersch et al.
What are the challenges?
What we see

What a computer sees
Challenges: robustness

Illumination

Object pose

Clutter

Occlusions

Intra-class appearance

Viewpoint

Kristen Grauman
Challenges: context and human experience

Context cues

Kristen Grauman
Challenges: context and human experience

Context cues

Function

Dynamics

Kristen Grauman
Challenges: context and human experience

Fei Fei Li, Rob Fergus, Antonio Torralba
Challenges: context and human experience

Fei Fei Li, Rob Fergus, Antonio Torralba
Challenges: context and human experience

Fei Fei Li, Rob Fergus, Antonio Torralba
Challenges: scale, efficiency

• Half of the cerebral cortex in primates is devoted to processing visual information
Challenges: scale, efficiency

- flickr: 10 billion images
- facebook: 250 billion images
- imgur: 1 billion images served daily
- YouTube: 300 hours uploaded per minute

From Cisco: Almost 90% of web traffic is visual!
Challenges: scale, efficiency

~10,000 to 30,000 object categories

Fei Fei Li, Rob Fergus, Antonio Torralba

Biederman 1987
~10,000 to 30,000
Challenges: learning with minimal supervision

Less

Unlabeled, multiple objects

Classes labeled, some clutter

Cropped to object, parts and classes

More

Kristen Grauman
This is a pottopod
Find the pottopod
What works today

• Reading license plates, zip codes, checks
What works today

• Reading license plates, zip codes, checks
• Fingerprint recognition

Source: Lana Lazebnik
What works today

- Reading license plates, zip codes, checks
- Fingerprint recognition
- Face detection
What works today

• Reading license plates, zip codes, checks
• Fingerprint recognition
• Face detection
• Recognition of flat textured objects (CD covers, book covers, etc.)

Source: Lana Lazebnik
What works today

• Reading license plates, zip codes, checks
• Fingerprint recognition
• Face detection
• Recognition of flat textured objects (CD covers, book covers, etc.)
• Recognition of generic categories(*)!
Progress charted by datasets

Roberts 1963

COIL

1963 ... 1996

Slide credit: Kristen Grauman
Progress charted by datasets

Slide credit: Kristen Grauman
Progress charted by datasets

Slide credit: Kristen Grauman
Progress charted by datasets

Faces in the Wild

80M Tiny Images

ImageNet

Birds-200

PASCAL VOC

Slide credit: Kristen Grauman
Evolution of methods

- Hand-crafted models
- 3D geometry
- Hypothesize and align

- Hand-crafted features
- Learned models
- Data-driven

“End-to-end” learning of features and models*

* Labeled data, fast compute (GPUs).
Course Information

• Website: https://sites.google.com/a/ucdavis.edu/ecs-269-visual-recognition-fall-2019/

• Canvas: https://canvas.ucdavis.edu/courses/361432

• 4 Units
• Office hours: by appointment (email)
• Email: start subject with “[ECS269]”
• Krishna Kumar Singh
• ecs269fall2019TA@gmail.com
• PhD student in CS

• Yuheng Li
• ecs269fall2019TA@gmail.com
• MS student in CS
This course

• Survey state-of-the-art research in computer vision

• High-level vision and learning problems with focus on recent deep learning techniques
Goals

• Understand, analyze, and discuss state-of-the-art techniques

• Identify interesting open questions and future directions
Prerequisites

• Course in computer vision (ECS 174) or machine learning (ECS 171)
Requirements

• Class Participation [15%]

• Paper Reviews [25%]

• Paper Presentations (1 time) [30%]

• Final Project [30%]
Class participation

• Actively participate in discussions
• **Read assigned paper** before each class
• Email TA after class if you contributed in any way to the discussions that day (1 sentence summary)
Paper reviews

• **Detailed review of paper** before each class

• *At most* one page in length
 – A summary of the paper (2-3 sentences)
 – Main contributions
 – Strengths and weaknesses
 – Experiments convincing?
 – Extensions?
 – Additional comments, including unclear points, open research questions, and applications

• Upload to Canvas by **11:59 pm the day before each class**
Paper presentations

• 1 time during the quarter (in groups of 2)
• ~20 minutes long, well-organized, and polished:
 – Clear statement of the problem
 – Motivate why the problem is interesting, important, and/or difficult
 – Describe key contributions and technical ideas
 – Experimental setup and results
 – Strengths and weaknesses
 – Interesting open research questions, possible extensions, and applications

• Slides should be clear and mostly visual (figures, animations, videos)
• Look at background papers as necessary
Paper presentations

• Search for relevant material, e.g., from the authors' webpage, project pages, etc.

• **Each slide that is not your own must be clearly cited**

• Meet with TA **one day before your presentation** with prepared slides; your responsibility to email TA to schedule a time

• Upload slides to Canvas on day of presentation (after class is fine)

• **Skip paper review the day you are presenting**
Final project

• One of:
 – Design and evaluation of a novel approach
 – An extension of an approach studied in class
 – In-depth analysis of an existing technique
 – In-depth comparison of two related existing techniques

• Work in groups of 4 or 5
• Talk to me/TA if you need ideas

• Google Cloud Credits (will be explained in a future class)
Final project

• Final Project Proposal (5%) due 10/23
 – 1 page

• Final Project Presentation (10%) due 12/2, 12/4, and 12/6
 – 10 minutes

• Final Project Paper (15%) due 12/9
 – 6-8 pages

• Upload pdf/slides to Canvas
Introductions
Image classification

- Convolutional neural networks AlexNet, ResNet
Object detection

- Two-stage and single-stage frameworks
CNN Visualization and Analysis

- What is encoded by a CNN?
Semantic Segmentation
Self-supervision

Example:

Question 1:

Question 2:
Neural Network Art
Coming up

• Carefully read class webpage
• Sign-up for papers you want to present (spreadsheet will be emailed shortly)
• Next class: CNN basics