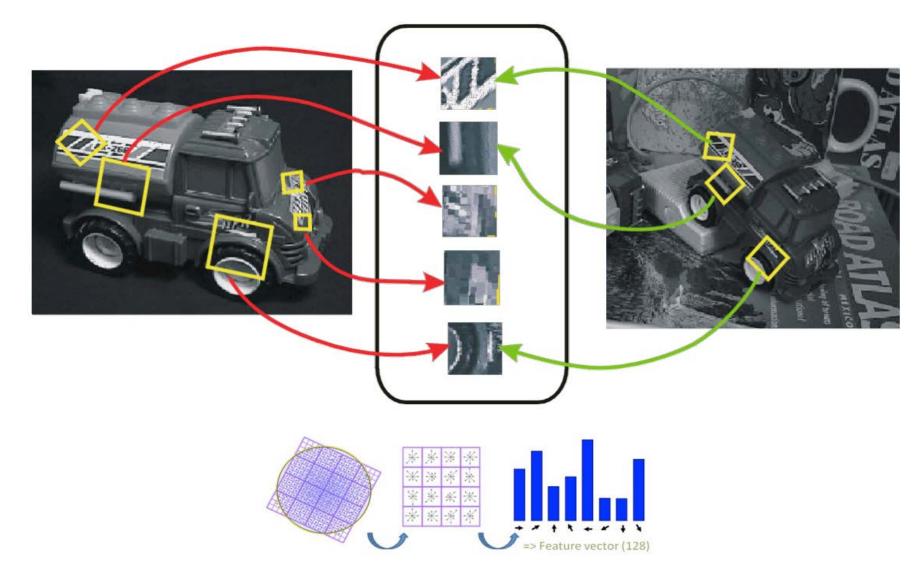
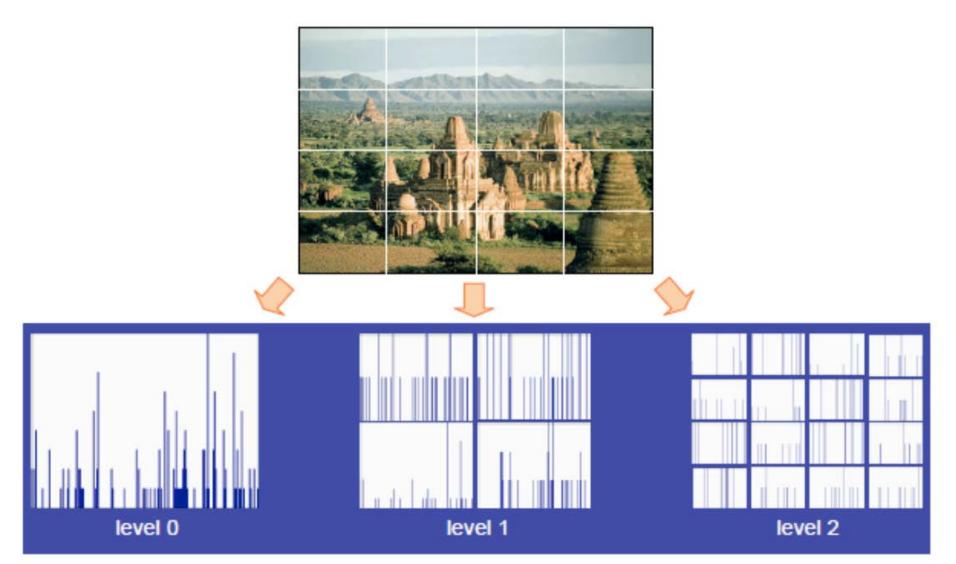
Deep Neural Networks Basics

For ECS 289G Presented by Fanyi Xiao

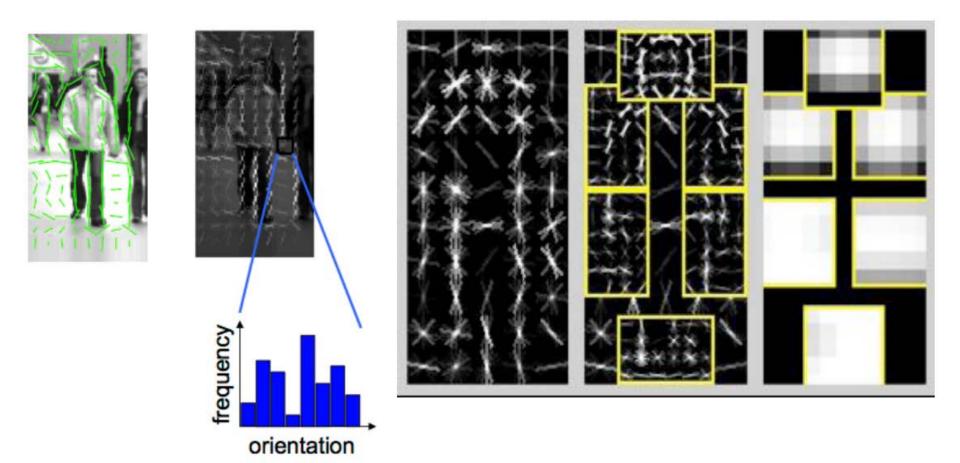
Face Detection, Viola & Jones, 2001 Most materials taken from Andrej Karpathy/Richard Socher/Nando de Freitas/caffe CVPR tutorial



"SIFT" & Object Recognition, David Lowe, 1999



Spatial Pyramid Matching, Lazebnik, Schmid & Ponce, 2006



Histogram of Gradients (HoG) Dalal & Triggs, 2005

Deformable Part Model Felzenswalb, McAllester, Ramanan, 2009

Emergence of DNNs in Vision

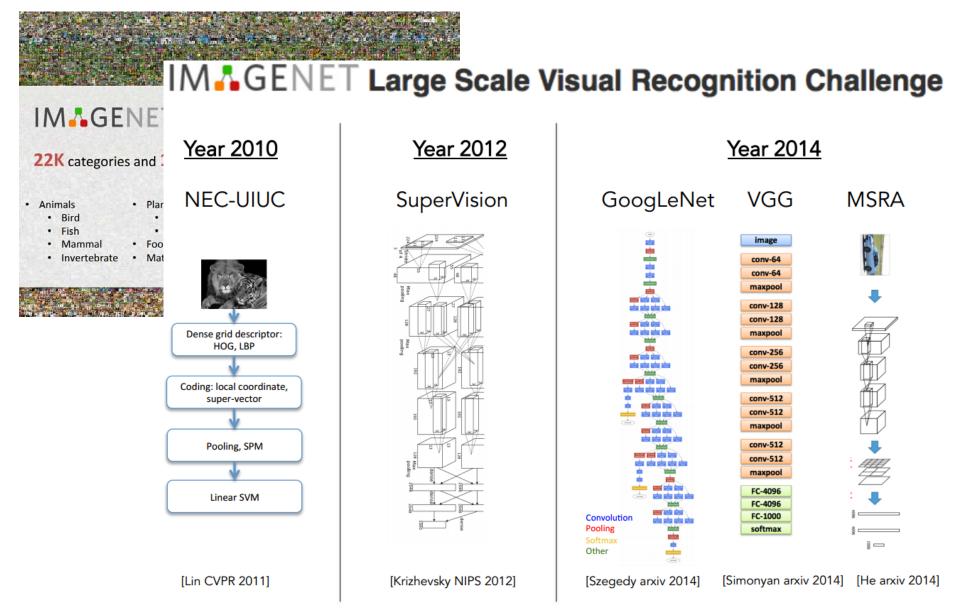


Image Classification

assume given set of discrete labels {dog, cat, truck, plane, ...}

→ cat

Data-driven approach

airplane	ind its	-	X	*	1	2	-1		-
automobile	H	12	1	-	Test	-	A	100	*
bird		t	1		4	1	M	1	W
cat			50		1		1	the second	1
deer	10	1	R	1	4	Y	X	n.	2
dog	376 A	T		1		9	Ca)	1	N.
frog	N		1	-			5		5.0
horse	- He - He	A	h	P	170	1	The state	(a)	T.
ship	-	1 miles	~	MAR NO	-	J	10		
truck		1					Pro-	-	da

Learn visual features "end-to-end"

Compositional Models Learned End-to-End

Hierarchy of Representations

- vision: pixel, motif, part, object

concrete

- text: character, word, clause, sentence

learning

- speech: audio, band, phone, word

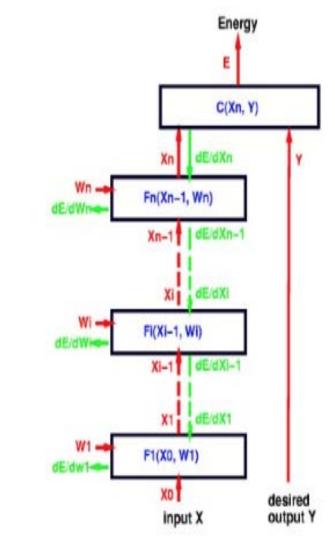


figure credit Yann LeCun, ICML '13 tutorial

Most materials taken from Andrej Karpathy/Richard Socher/Nando de Freitas/caffe CVPR tutorial

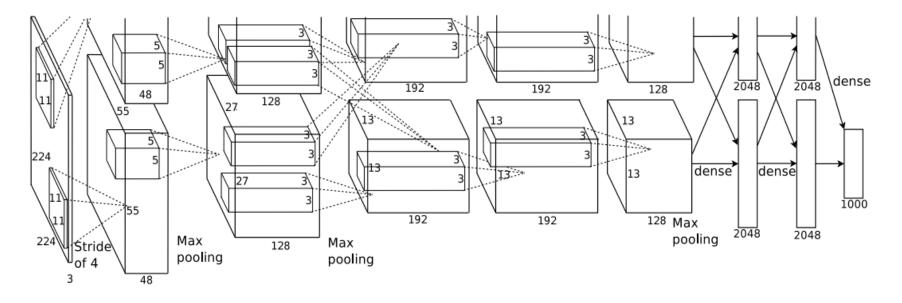
abstract

Three key ingredients for training an NN:

- 1. Score function
- 2. Loss function
- 3. Optimization

Three key ingredients for training an NN:

1. Score function: y=f(x,W)



x -- 224*224*3 image patch y -- 1000d vector

Three key ingredients for training an NN:

2. Loss function: for example max-margin loss and cross-entropy loss

$$L_i = \sum_{j
eq y_i} \max(0, f(x_i, W)_j - f(x_i, W)_{y_i} + \Delta)$$

$$L_i = -\log\left(rac{e^{f_{y_i}}}{\sum_j e^{f_j}}
ight)$$

Three key ingredients for training an NN:

3. Optimization: simple gradient descent!

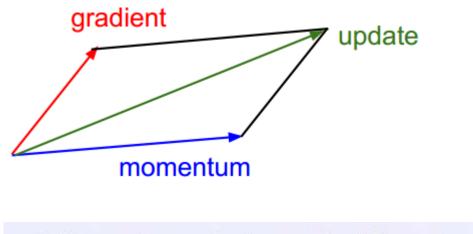
Three key ingredients for training an NN:

3. Optimization: in practice, stochasitic (mini-batch) gradient descent!

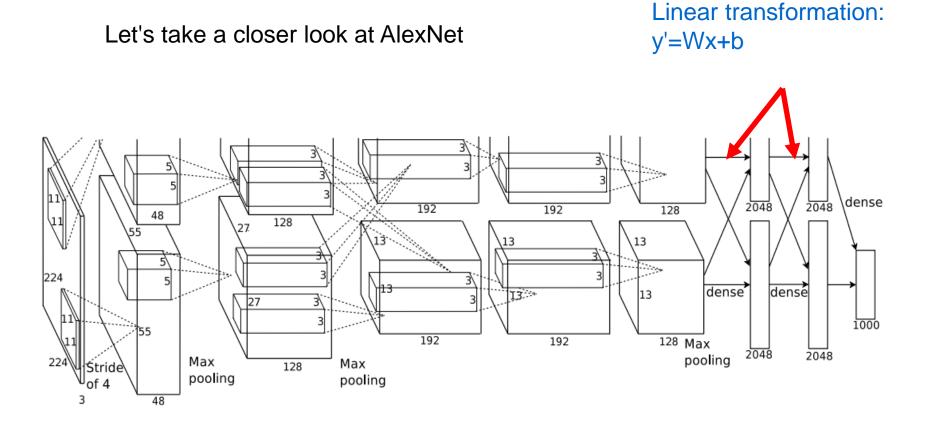
```
# Vanilla Minibatch Gradient Descent
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step size * weights grad # perform parameter update
```

Three key ingredients for training an NN:

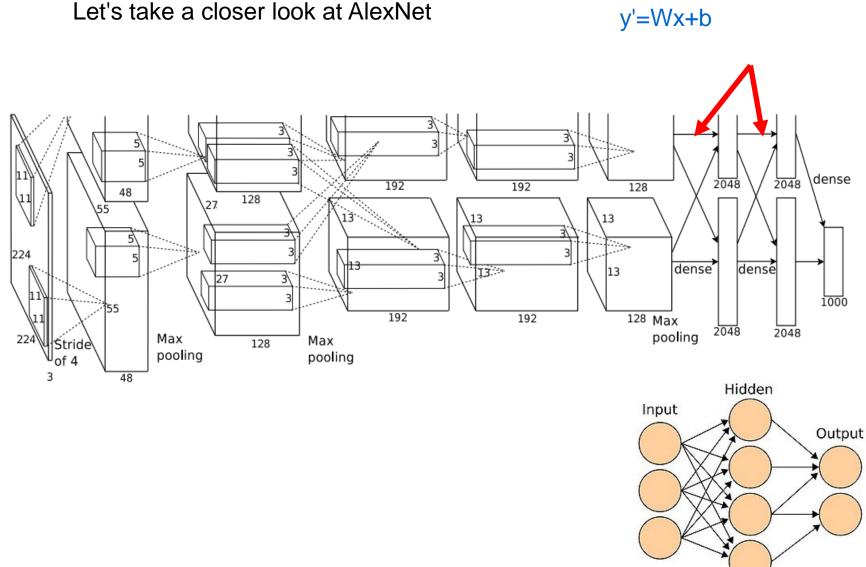
3. Optimization: in practice, stochasitic (mini-batch) gradient descent + *momentum*! (Many other optimization methods like adagrad/rmsprop)

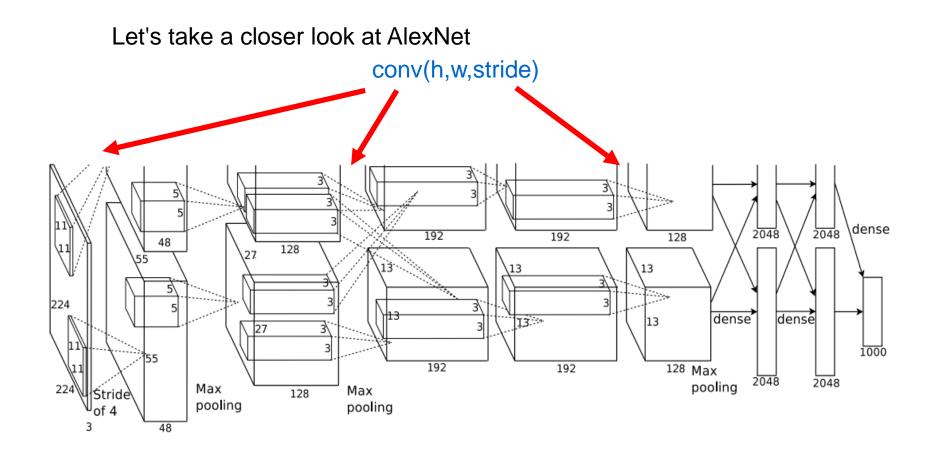


```
weights_grad = evaluate_gradient(loss_fun, data, weights)
vel = vel * 0.9 - step_size * weights_grad
weights += vel
```

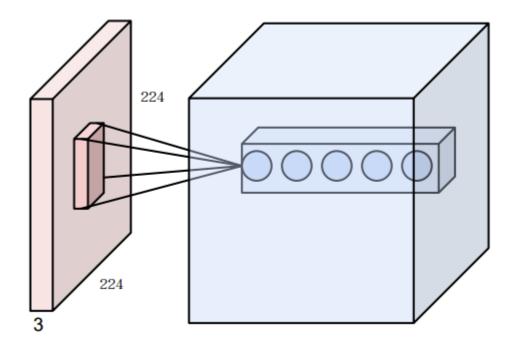


Linear transformation:

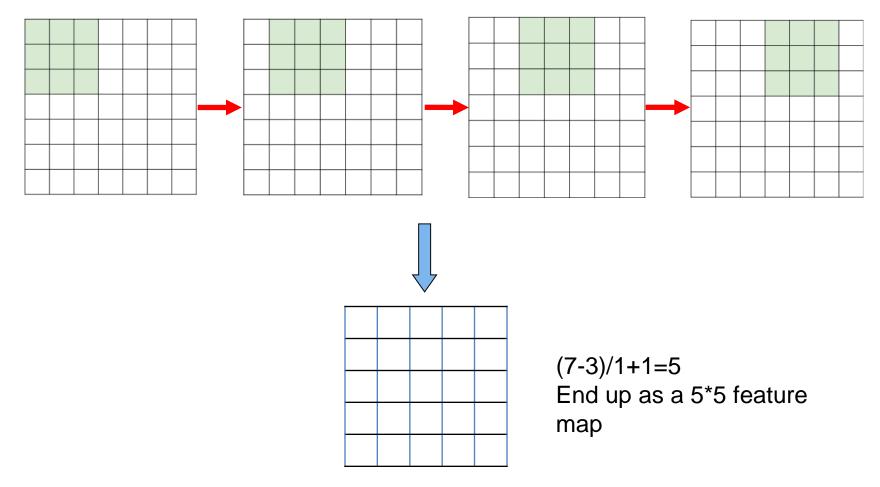


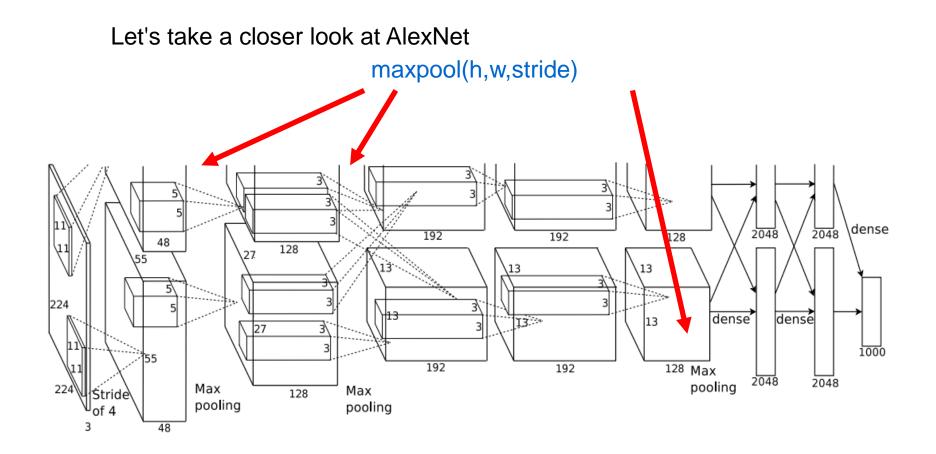


conv(h,w,stride)

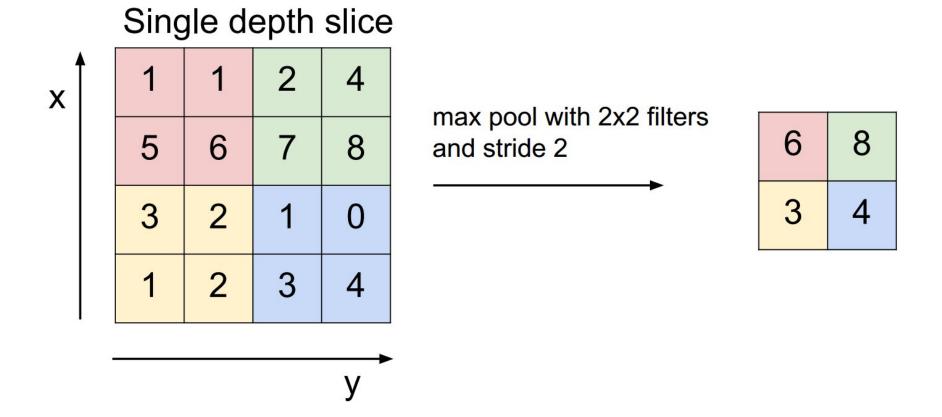


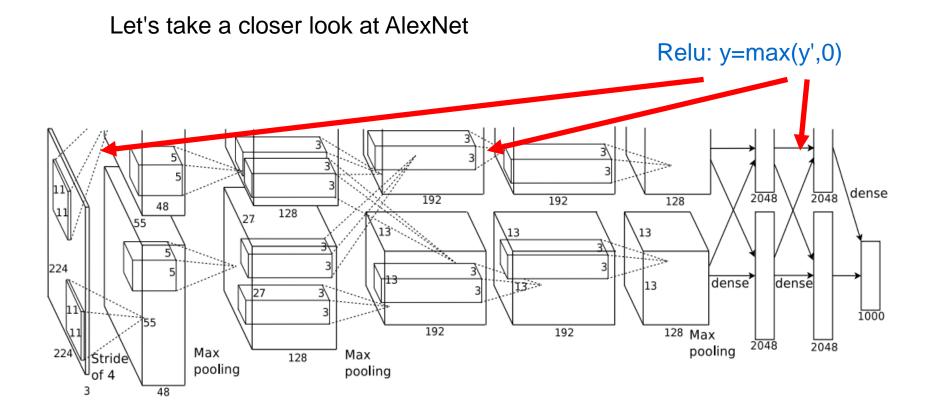
Example: conv(h=3,w=3,stride=1)





Example: maxpool(h=2,w=2,stride=2)



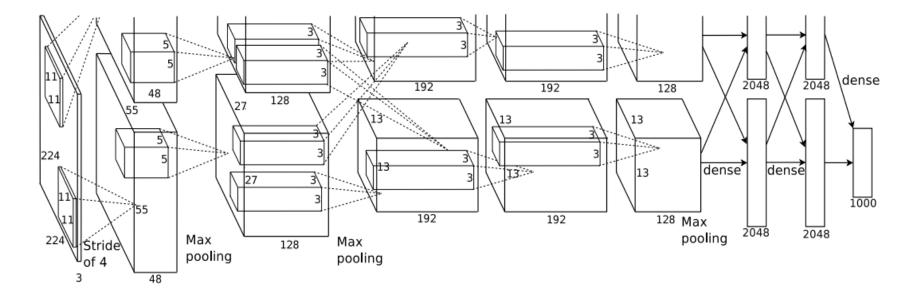


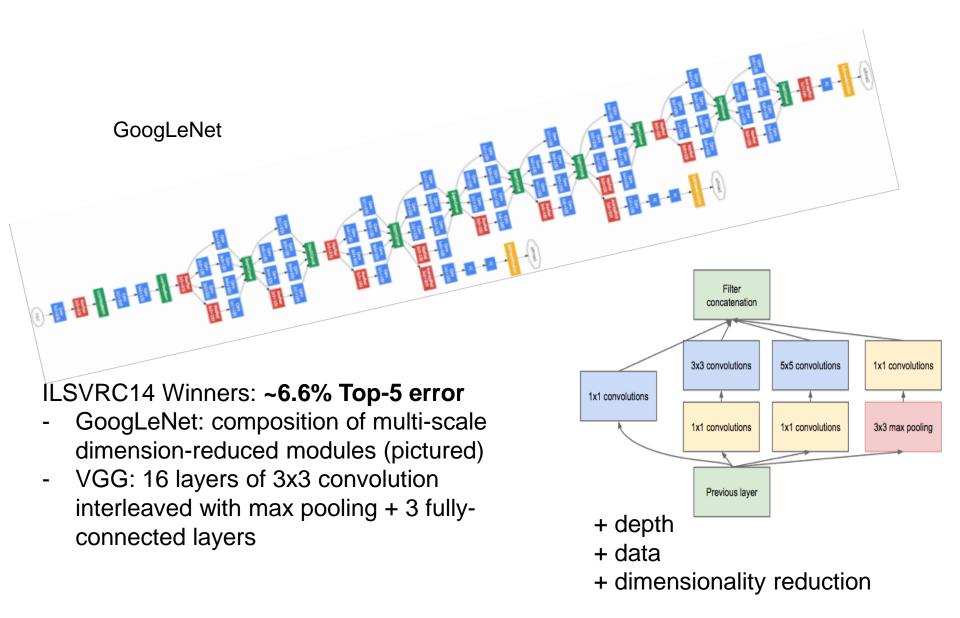


- Does not saturate
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice!

However, non-bounded response and dead when less than 0 (improved version leaky ReLU)

There are two key differences to Vanilla Neural Nets: neurons arranged in 3D volumes have local connectivity, share parameters





Object Detection

R-CNN: Region-based Convolutional Networks

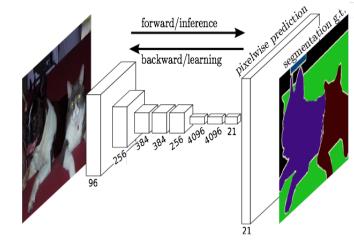
http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/detection.ipynb Full R-CNN scripts available at https://github.com/rbgirshick/rcnn

Ross Girshick et al. *Rich feature hierarchies for accurate object detection and semantic segmentation.* CVPR14.

Fast R-CNN arXiv and code

Segmentation

Fully convolutional networks for pixel prediction applied to semantic segmentation end-to-end learning efficiency in inference and learning 175 ms per-image prediction multi-modal, multi-task



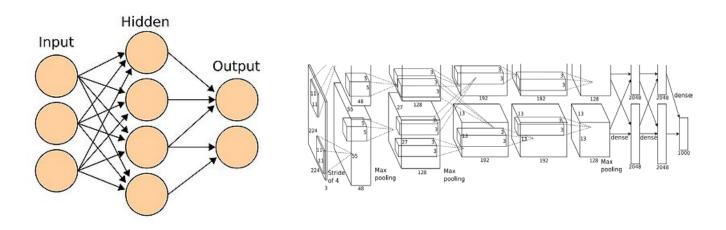
Jon Long* & Evan Most materials taken from Andrej Karpathy/Richard Socher/Nando de Freitas/caffe CVPR tutori Shelhamer*,

Further applications

- depth estimation
- denoising

arXiv and pre-release

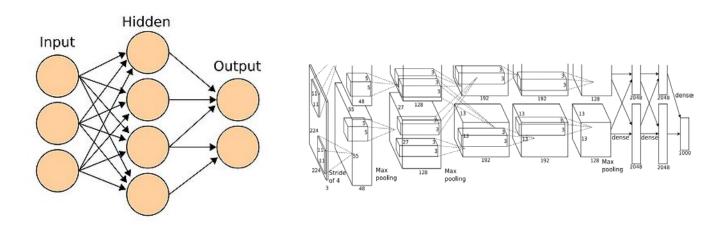
Problem with Feed-forward Nets



What if we want to be able to have a model telling us what's the probability of the following two sententes, resepctively:

- 1. The cat sat on the mat
- 2. The mat is having dinner with the cat

Problem with Feed-forward Nets

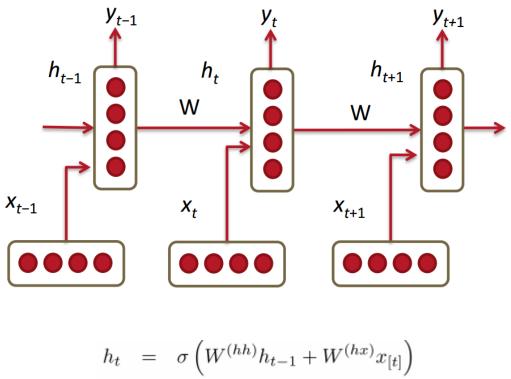


What if we want to be able to have a model telling us what's the probability of the following two sententes, resepctively:

- 1. The cat sat on the mat
- 2. The mat is having dinner with the cat

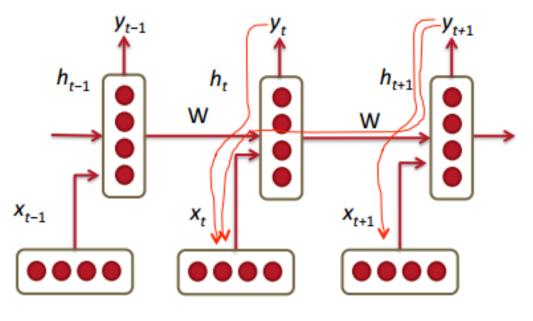
Cannot handle variable length input

RNNs tie the weights at each time step



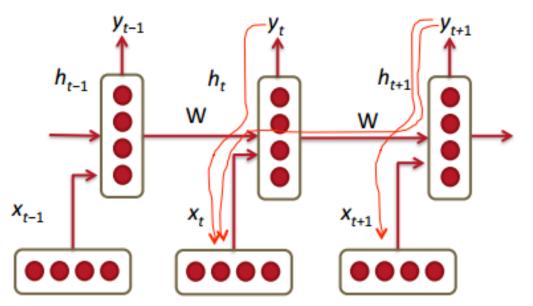
$$\hat{y}_t = \operatorname{softmax}\left(W^{(S)}h_t\right)$$

Training of RNNs is hard...



$$h_t = Wf(h_{t-1}) + W^{(hx)}x_{[t]}$$
$$\frac{\partial h_t}{\partial h_k} = \prod_{j=k+1}^t \frac{\partial h_j}{\partial h_{j-1}} = \prod_{j=k+1}^t W^T \operatorname{diag}[f'(h_{j-1})]$$

Training of RNNs is hard...



Solution 1: clip the gradient!

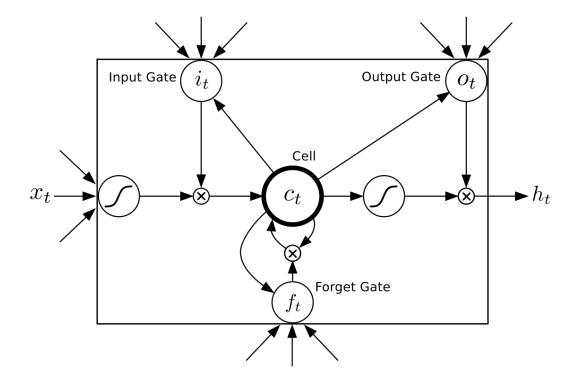
Algorithm 1 Pseudo-code for norm clipping the gradients whenever they explode

$$\begin{array}{l} \hat{\mathbf{g}} \leftarrow \frac{\partial \mathcal{E}}{\partial \theta} \\ \mathbf{if} \quad \|\hat{\mathbf{g}}\| \geq threshold \ \mathbf{then} \\ \quad \hat{\mathbf{g}} \leftarrow \frac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}} \\ \mathbf{end} \ \mathbf{if} \end{array}$$

Some theory: On the difficulty of training recurrent neural networks, Pascanu et al. ICML2013

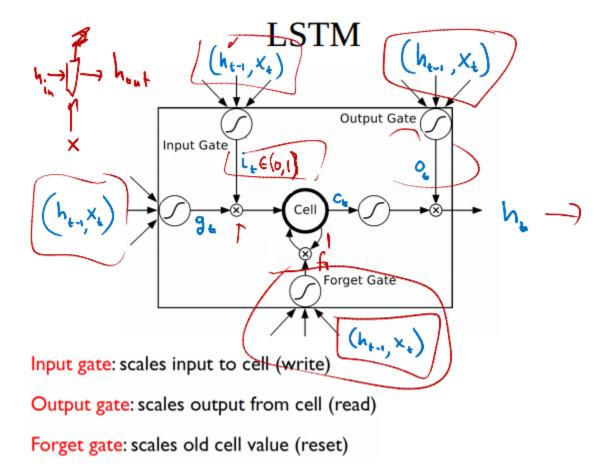
Training of RNNs is hard...

Solution 2: NNs with gating units (LSTM/GRU)



Training of RNNs is hard...

Solution 2: nets with gating units (LSTM/GRU)

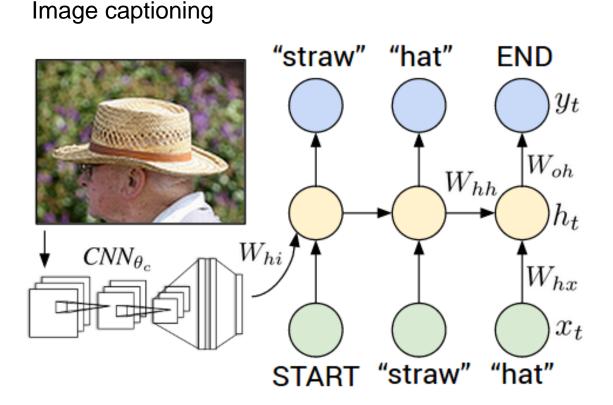


Training of RNNs is hard...

Solution 2: nets with gating units (LSTM/GRU)

$$\begin{aligned} \mathbf{\dot{i}}_{t} &= Sigm(\boldsymbol{\theta}_{xi}\mathbf{x}_{t}^{t} + \boldsymbol{\theta}_{hi}\mathbf{h}_{t-1} + \mathbf{b}_{i}) \\ \mathbf{\dot{f}}_{t} &= Sigm(\boldsymbol{\theta}_{xf}\mathbf{x}_{t} + \boldsymbol{\theta}_{hf}\mathbf{h}_{t-1} + \mathbf{b}_{f}) \\ \mathbf{o}_{t} &= Sigm(\boldsymbol{\theta}_{xo}\mathbf{x}_{t} + \boldsymbol{\theta}_{ho}\mathbf{h}_{t-1} + \mathbf{b}_{o}) \\ \mathbf{g}_{t} &= Tanh(\boldsymbol{\theta}_{xg}\mathbf{x}_{t} + \boldsymbol{\theta}_{hg}\mathbf{h}_{t-1} + \mathbf{b}_{g}) \\ \mathbf{c}_{t} &= \mathbf{f}_{t} \odot \mathbf{c}_{t-1} + \mathbf{\dot{i}}_{t} \odot \mathbf{g}_{t} \\ \mathbf{h}_{t} &= \mathbf{o}_{t} \odot Tanh(\mathbf{c}_{t}) \\ \end{aligned}$$

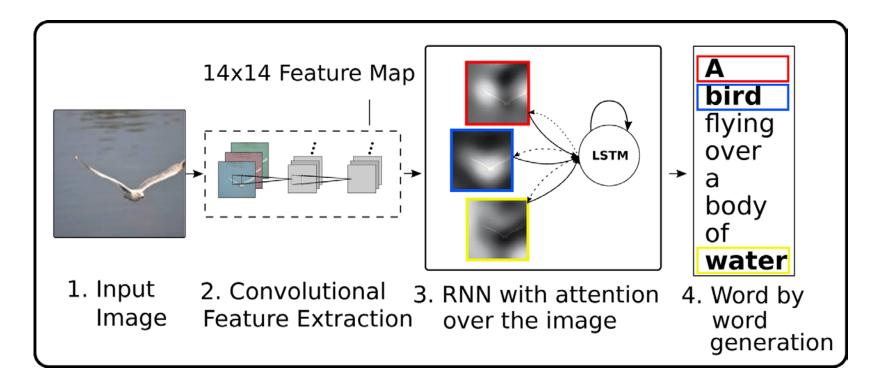
RNN in vision



Deep Visual-Semantic Alignments for Generating Image Descriptions, Andrej Karpathy et al.

RNN in vision

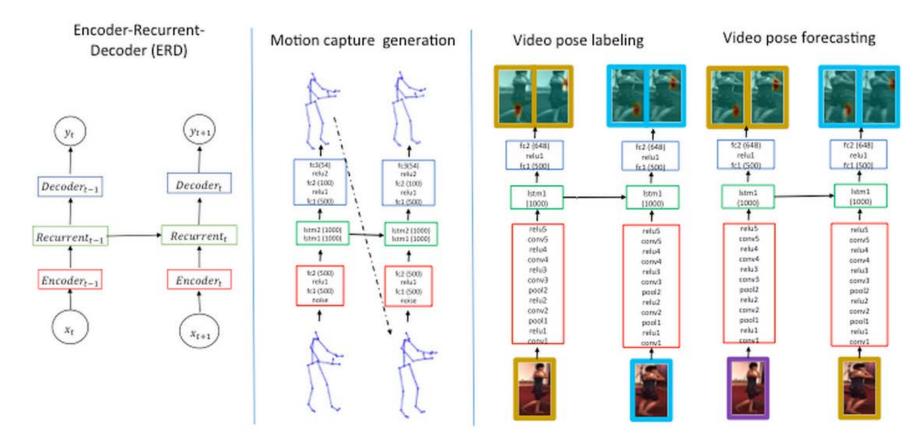
Visual attention model



Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, Kelvin Xu et al.

RNN in vision

RNNs for Human Dynamics



Recurrent Network Models for Human Dynamics, Katerina Fragkiadaki et al.

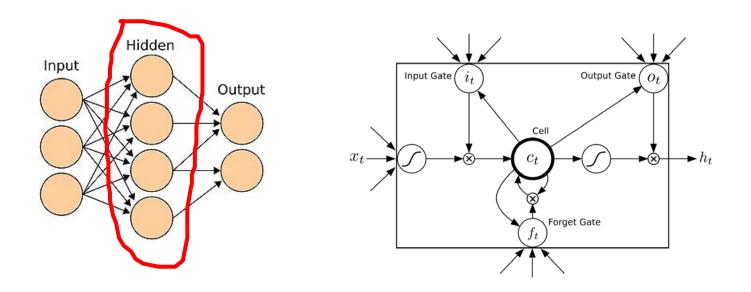
Tricks

1. Numerical gradient check

```
fx = f(x) # evaluate function value at original point
grad = np.zeros like(x)
# iterate over all indexes in x
it = np.nditer(x, flags=['multi index'], op flags=['readwrite'])
while not it.finished:
 # evaluate function at x+h
 ix = it.multi index
 oldval = x[ix]
 x[ix] = oldval + h # increment by h
 fxph = f(x) # evalute f(x + h)
 x[ix] = oldval - h
 fxmh = f(x) # evaluate f(x - h)
 x[ix] = oldval # restore
 # compute the partial derivative with centered formula
 grad[ix] = (fxph - fxmh) / (2 * h) # the slope
 if verbose:
  print ix, grad[ix]
 it.iternext() # step to next dimension
```

Tricks

- 1. Numerical gradient check
- 2. Modulize layers: only three functions needed
 - (1) output=forward(input,model)
 - (2) dJ_dW=computeParamGrad(input,outputGrad,model)
 - (3) dJ_dInput=computeInputGrad(input,outputGrad,model)
 - Everything else is just putting together lego pieces



Questions?

Thanks!