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Computer Vision in the Pre-DNN Era
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Computer Vision in the Pre-DNN Era
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Emergence of DNNs in Vision
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Neural Networks

Learn visual features 
"end-to-end"
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Compositional Models
Learned End-to-End

Hierarchy of Representations
- vision: pixel, motif, part, object
- text: character, word, clause, sentence
- speech: audio, band, phone, word

concrete abstract
learning

figure credit Yann LeCun, ICML ‘13 tutorial

Neural Networks
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Neural Networks

Three key ingredients for training an NN: 

1. Score function
2. Loss function
3. Optimization
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Neural Networks

Three key ingredients for training an NN: 

1. Score function: y=f(x,W)

x -- 224*224*3 image patch
y -- 1000d vector
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Neural Networks

Three key ingredients for training an NN: 

2. Loss function: for example max-margin loss and cross-entropy loss
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Neural Networks

Three key ingredients for training an NN: 

3. Optimization: simple gradient descent!
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Neural Networks

Three key ingredients for training an NN: 

3. Optimization: in practice, stochasitic (mini-batch) gradient descent! 
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Neural Networks

Three key ingredients for training an NN: 

3. Optimization: in practice, stochasitic (mini-batch) gradient descent + 
momentum! (Many other optimization methods like adagrad/rmsprop)
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Convolution Neural Networks

Let's take a closer look at AlexNet
Linear transformation: 
y'=Wx+b
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Let's take a closer look at AlexNet
conv(h,w,stride)

Convolution Neural Networks
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conv(h,w,stride)

Convolution Neural Networks
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Example: conv(h=3,w=3,stride=1)

(7-3)/1+1=5
End up as a 5*5 feature 
map

Convolution Neural Networks
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Let's take a closer look at AlexNet
maxpool(h,w,stride)

Convolution Neural Networks
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Example: maxpool(h=2,w=2,stride=2)

Convolution Neural Networks
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Let's take a closer look at AlexNet
Relu: y=max(y',0)

Convolution Neural Networks
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Problems with tanh: 
Saturated response

Relu: y=max(y',0)
- Does not saturate
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice! 

However, non-bounded response and dead when less than 0
(improved version leaky ReLU)

Convolution Neural Networks
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There are two key differences to Vanilla Neural Nets: neurons arranged in 3D 
volumes have local connectivity, share parameters

Convolution Neural Networks
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GoogLeNet

ILSVRC14 Winners: ~6.6% Top-5 error
- GoogLeNet: composition of multi-scale 

dimension-reduced modules (pictured)
- VGG: 16 layers of 3x3 convolution 

interleaved with max pooling + 3 fully-
connected layers + depth

+ data
+ dimensionality reduction

Convolution Neural Networks
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Object Detection

R-CNN: Region-based Convolutional Networks
http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/detection.ipynb

Full R-CNN scripts available at
https://github.com/rbgirshick/rcnn

Ross Girshick et al.
Rich feature hierarchies for accurate 
object detection and semantic 
segmentation. CVPR14.

Fast R-CNN
arXiv and code

Convolution Neural Networks

http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/detection.ipynb
https://github.com/rbgirshick/rcnn
http://arxiv.org/pdf/1504.08083v1.pdf
https://github.com/rbgirshick/fast-rcnn
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Fully convolutional networks for pixel prediction
applied to semantic segmentation

end-to-end learning
efficiency in inference and learning

175 ms per-image prediction
multi-modal, multi-task

Segmentation

Further applications
- depth estimation
- denoising

Jon Long* & Evan 
Shelhamer*,

 

arXiv and pre-release

http://arxiv.org/abs/1411.4038
https://github.com/BVLC/caffe/wiki/Model-Zoo%23fully-convolutional-semantic-segmentation-models-fcn-xs
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Problem with Feed-forward Nets

What if we want to be able to have a model telling us 
what's the probability of the following two sententes, 
resepctively:

1. The cat sat on the mat
2. The mat is having dinner with the cat
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Problem with Feed-forward Nets

What if we want to be able to have a model telling us 
what's the probability of the following two sententes, 
resepctively:

1. The cat sat on the mat
2. The mat is having dinner with the cat

Cannot handle variable length input
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Recurrent Neural Net

RNNs tie the weights at each time step
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Recurrent Neural Net

Training of RNNs is hard...
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Recurrent Neural Net

Training of RNNs is hard...

Solution 1: clip the gradient!
Some theory: On the 
difficulty of training 
recurrent neural 
networks, Pascanu et 
al. ICML2013
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Recurrent Neural Net

Training of RNNs is hard...

Solution 2: NNs with gating units (LSTM/GRU)



Most materials taken from Andrej Karpathy/Richard Socher/Nando de Freitas/caffe CVPR tutorial

Recurrent Neural Net
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Most materials taken from Andrej Karpathy/Richard Socher/Nando de Freitas/caffe CVPR tutorial

Recurrent Neural Net

Training of RNNs is hard...

Solution 2: nets with gating units (LSTM/GRU)
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RNN in vision

Image captioning

Deep Visual-Semantic Alignments for Generating Image Descriptions, Andrej 
Karpathy et al.
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RNN in vision

Visual attention model

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, 
Kelvin Xu et al.
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RNN in vision

RNNs for Human Dynamics

Recurrent Network Models for Human Dynamics, Katerina Fragkiadaki et al.
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Tricks

1. Numerical gradient check
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Tricks

1. Numerical gradient check
2. Modulize layers: only three functions needed

(1) output=forward(input,model)
(2) dJ_dW=computeParamGrad(input,outputGrad,model)
(3) dJ_dInput=computeInputGrad(input,outputGrad,model)
Everything else is just putting together lego pieces
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Questions?

Thanks!
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