
A Sense of ‘Danger’ for Windows Processes?

Salman Manzoor, M. Zubair Shafiq, S. Momina Tabish, Muddassar Farooq

Next Generation Intelligent Networks Research Center (nexGIN RC)
FAST National University of Computer & Emerging Sciences (NUCES)

Islamabad, 44000, Pakistan
{salman.manzoor,zubair.shafiq,momina.tabish,muddassar.farooq}@

nexginrc.org

Abstract. The sophistication of modern computer malware demands
run-time malware detection strategies which are not only efficient but
also robust to obfuscation and evasion attempts. In this paper, we in-
vestigate the suitability of recently proposed Dendritic Cell Algorithms
(DCA), both classical DCA (cDCA) and deterministic DCA (dDCA), for
malware detection at run-time. We have collected API call traces of real
malware and benign processes running on Windows operating system.
We evaluate the accuracy of cDCA and dDCA for classifying between
malware and benign processes using API call sequences. Moreover, we
also study the effects of antigen multiplier and time-windows on the
detection accuracy of both algorithms.

Key words: API Call Sequence, Artificial Immune System, Dendritic
Cell Algorithm, Malware Detection

1 Introduction

The sophisticated computer malware is becoming a serious threat to the infor-
mation technology infrastructure, which is the backbone of modern e-commerce
systems [2]. A recent outbreak of Conficker malware affected more than 9
million computers including those of Ministry of Defence, United Kingdom [3].
This incident has proved that commercial anti-virus software, even with updated
malware definitions, are incapable of safeguarding our information technology in-
frastructure. In [7], the authors have shown that commercial anti-virus software
are easily befooled using evasion attempts, such as code obfuscation, encryption
and polymorphic transformations. Therefore, security experts are now focusing
their attention to robust run-time malware detection techniques that analyze
API call sequence of a process to classify it as benign or malicious. Intuitively,
such dynamic techniques are resilient to the above-mentioned evasion attempts
because malware has to eventually execute the malicious activity.

Artificial Immune Systems (AIS) have served as a natural source of inspi-
ration to develop dynamic systems for process classification. The field of AIS
was initially dominated by the self/nonself theory, which models the working
? Apologies to Forrest et al. [9].

2 Salman et al.

of adaptive immune system. Forrest et al. initially used the idea of self/nonself
to develop the negative selection algorithm (NSA) [9]. Initially, NSA was used
to classify a computer process as benign or malicious. NSA has been incremen-
tally improved and several advanced versions are now available, such as the
real-valued NSA [10], the randomized real-valued NSA [11], and the real-valued
NSA with variable sized detectors [17]. However, Stibor et al. carried out sev-
eral experiments to evaluate the appropriateness of NSA for anomaly detection.
The authors showed that negative selection algorithm is not suitable for higher
dimensional datasets [20], [21].

AIS research community has recently turned its attention to a new genera-
tion of immune-inspired AIS algorithms which mimic the working model of the
innate immune system [4]. The fundamental principle of such algorithms is that
the innate immune system responds to ‘danger’ instead of ‘nonself’. Aickelin et
al. proposed a new AIS algorithm called Dendritic Cell Algorithm (DCA) to
overcome the above-mentioned shortcomings in NSA [6], [12].

The classical DCA (cDCA) consists of a number of context specific stochastic
variables which makes it difficult to systematically analyze a given task. Con-
sequently, Greensmith et al. [15] proposed a simplified and more predictable
version of DCA which is called deterministic DCA (dDCA). Since its original
inception, two major improvements are proposed for DCA namely antigen mul-
tiplier and time-windows. Gu et al. have initially investigated the usefulness of
these concepts for DCA [16].

In this study, we investigate the relative merits/de-merits of cDCA and
dDCA, coupled with antigen multiplier and time-windows concepts, for mal-
ware detection. In order to ensure real-world relevance, we have collected API
call traces by running 100 benign and 416 malicious Windows executables in
a virtual environment.1 The malicious executables include trojans, viruses and
worms. We quantify the efficacy of DCA in terms of its detection accuracy.

The remaining paper is organized as follows: Section 2 presents a summary
of related work. Section 3 provides an overview of the DCA and its variations.
In Section 4, we explain the collection process of API call traces for real-world
malware and benign processes. Section 5 describes our experimental setup and
presents the detailed discussions on empirical results. In Section 6, we briefly
discuss major limitations of DCA and their potential countermeasures. Finally,
we conclude our paper in Section 7.

2 Related Work

AISs have served as a natural source of inspiration for designing anomaly detec-
tion systems. To maintain focus, we only discuss the most relevant research.

Classical AIS algorithms are inspired by the working of adaptive immune
system which follows principles of the self/nonself theory. In this paradigm, NSA
has attained the status of a defacto standard. It was proposed by Forrest et al. for

1 The datasets used in this paper are available at http://www.nexginrc.org.

A Sense of ‘Danger’ for Windows Processes 3

classification of anomalous processes in a computer system [9]. Several advanced
versions of NSA have been proposed to date which include but are not limited
to the real-valued NSA [10], the randomized real-valued NSA [11], and the real-
valued NSA with variable sized detectors [17]. The advanced versions of NSA
improve its scalability, space coverage, convergence time and formal treatment.
Even with the above-mentioned improvements, NSA has been widely criticized
for poor scalability behavior especially at higher dimensions [20], [21].

Danger theory proposed by Matzinger [19] claims that immune system works
by sensing ‘danger’. In [6], the authors investigated the feasibility of using dan-
ger theory to develop a new paradigm of AIS algorithms for network intrusion
detection. In [12], Greensmith et al. developed a novel DCA based on the con-
cepts of danger theory. The authors successfully applied cDCA for classification
of breast cancer dataset. In [13] and [14], the authors used cDCA for SYN scan
detection.

Since the seminal work of Greensmith et al., several variations of DCA have
been proposed. In [16], the authors enhanced DCA with two additional features,
called antigen multiplier and time-windows. DCA relies on aggregate sampling
of the antigens for eventual classification; therefore, antigen multiplier was used
to improve sampling process. Each antigen was multiplied 10, 50 and 100 times
to study the effect of multiple sampling. The authors also used time-windows to
study the aggregate effect of signals. They used fixed time-windows of 2, 3, 5,
7 and 10 instances. They also compared DCA with NSA and C4.5 decision tree
for benchmark comparison.

In [15], the authors proposed the dDCA. Several stochastic variables of cDCA
were removed to understand the merits/demerits of the core algorithm. Three
relevant modifications introduced in dDCA were: (1) a simple signal processing
procedure, (2) context evaluation based on one factor, (k̄), which was used to
ultimately calculate an anomaly score Kα, and (3) a new metric (Tk) was defined
to determine threshold for Kα. The authors evaluated the detection accuracy of
dDCA using the PING scan dataset. In the next section, we provide a detailed
introduction of DCA and its variations.

3 Dendritic Cell Algorithm and its variations

Dendritic cells (DCs), of the innate immune system, are the core component of
DCA. They have the ability to sense the internal conditions of a tissue by detect-
ing various signals. A safe signal is produced in an event of natural cell death
(apoptosis), which reflects the normal environment of a tissue. On the contrary,
unnatural death of cells (necrosis) because of injury or pathogenic infection leads
to the release of danger signals. Another strong indicator of potentially harmful
environment is pathogen associated molecular pattern (PAMP).

Newly born DCs are in an immature state and scour a tissue for antigens (sus-
pect) and signals (evidence). Antigens and signals together evaluate the context
of a tissue as benign or potentially malicious. DCs distinguish between contexts
by taking different pathways to their maturity. A fully matured state of a DC

4 Salman et al.

is the result of exposure to higher concentration of danger and PAMP signals.
Likewise, semi-matured state of a DC depicts exposure to higher concentration
of safe signals. A collective assessment of DC population activates or suppresses
the immune response. We now explain the details of different variations of DCA.

3.1 Classical DCA (cDCA)

In cDCA, proposed by Greensmith et al. [12], a population of 100 DCs is main-
tained. Each DC is assigned a random migration threshold which limits the
amount of time it spends in a tissue. A subset of population is randomly sam-
pled to form a sampling pool of antigens. The selected DCs spend time in a
tissue to collect antigens and signals. The input signals are multiplied with pre-
defined weights to calculate output signals. In this paper, for cDCA, we have
used same weight values as proposed by the authors in [12]. Three output sig-
nals (O0, O1, O2) are calculated for each DC as: Oi =

∑j = 2
j = 0 Wi j Sj ,∀ i, where

i refers to the category of output signal, j refers to the category of input signal,
W is the weight matrix, S is the input signal vector and O is the output signal
vector. O0 is costimulatory signal (csm) and it migrates to the lymph node if the
value of csm exceeds assigned migration threshold. In order to derive a context,
DC computes two more outputs: (1) the semi-mature context (O1), and (2) the
mature context (O2). The values are compared with one another and the overall
context is termed as safe if O1 is greater than O2, and vice-versa.

DCs that have lived their allotted span migrate to the lymph node. The
antigens and their corresponding contexts are saved to a log file. Each antigen
is sampled multiple times so that it can appear in different contexts in a log file.
In order to detect potentially malicious antigens, they are tagged with a mature
context antigen value (MCAV). MCAV for a particular antigen i, (MCAVi),
is derived by dividing the number of times that antigen (Agi) has appeared in
the danger context (Ndi) by total number of appearances (Ni). Mathematically,
MCAVi = Ndi

Ni
.

A threshold (T) is applied to MCAV to make the final classification decision.
The antigens with MCAV higher than T are termed malicious, and vice-versa.
Let ζm be the number of anomalous instances and ζ be the total number of
instances in a dataset. We can define T = ζm

ζ .

3.2 Deterministic Dendritic Cell Algorithm (dDCA)

The DCA has provided promising classification accuracy results on a number of
benchmark datasets [12], [13]. However, the basic DCA uses several stochastic
variables which make its systematic analysis very difficult. In order to mitigate
this problem, the authors in [15] have proposed some changes in cDCA. The new
variation of DCA, called dDCA, has following enhanced features:

– Three input signal categories are reduced to two, i.e. danger and safe signal;
– Random migration threshold is replaced with uniform distribution of lifespan

values in a population;

A Sense of ‘Danger’ for Windows Processes 5

– Dedicated storage and sampling of antigens is replaced with sampling of all
antigens by DCs;

– Instead of forming a sampling pool, the signals’ data is processed by all DCs.
As a result, output signals are calculated once for population of DCs;

– Only one factor (k̄) is calculated for each DC to arrive at a context. Negative
values of k̄ reflect a benign context and positive values indicate a malicious
context.

Signal processing is simplified by reducing the number of input signals and
using a weight assigning scheme. Two outputs are calculated: (1) accumulation
of signals (csm), and (2) score (k̄), to which the threshold is applied for classi-
fication. csm is defined as csm = D − S, and k̄ = D − 2S, where D and S are
values of danger and safe signals respectively. A new parameter Kα is defined
using the values of k̄. Its purpose is to provide real-valued scores. Kα is defined

as Kα =
∑

m
km∑

m
αm

, where km is the k̄ value for DCm, and αm is the number of

antigens of type α presented by DCm. Moreover, a threshold parameter (Tk)
is also defined. The values of Kα greater than the value of Tk depict malicious
context and smaller values indicate benign behavior. Tk is defined as Tk = Sk .̄i

Is
,

where Is is the total number of instances in a dataset, ī is the mean number of
iterations per incarnation of a DC, and Sk =

∑
Is

D − 2
∑

Is
S.

3.3 Antigen Multiplier

DCA has been mostly utilized for data mining problems. Most of the datasets
used for data mining contain only one copy of each instance (or antigen). In order
to assess the type of an antigen, it should be presented multiple times so that
MCAV value can be generated for it. The concept of antigen multiplier caters for
this requirement [16]. Each antigen is copied multiple times in the tissue antigen
vector. The classification decision is now averaged over the replicated population.
Intuitively, replicating an antigen should help in improving the classification
accuracy.

3.4 Moving Time-Windows

The signals in our body do not die suddenly; rather, they fade slowly over a
period of time. This temporal effect of signals is captured by introducing the
concept of moving time-windows in DCA [16]. New signals are computed using:
Ni j = 1

w

∑i + w
n = i On j ,∀ j, where Ni j is new signal value of ith antigen of jth

category, w is the window size and Oi j is original signal of ith antigen and
jth category. New signals (N) are the average of old signals (O) in a particular
time-window. Intuitively speaking, averaging of signals reduces the noise in input
signals.

6 Salman et al.

4 Dataset

In this section, we provide statistics of the benign and malware executable files
used in our study. We also describe the commercial API call tracer, API Monitor
1.5, used for logging API traces.

Table 1. Statistics of the Data used in this Study

Executable Quantity Avg. Filesize Min. Filesize Max. Filesize
Type (Kilo Bytes) (Kilo Bytes) (Kilo Bytes)

Benign 100 1, 263 4 104, 588
Trojan 117 270 1 9, 277
Virus 165 234 4 5, 832
Worm 134 176 3 1, 301
Total 516 50 2 1, 332

4.1 Benign and Malware executables

We have collected a set of 416 malware and 100 benign Windows executables.
The malware executables consist of trojans, viruses and worms. All of them are
in Win32 portable executable (PE) format. The benign executables are obtained
from a freshly installed copy of Windows XP and application installers. The
malware executables are obtained from VX Heavens virus collection which is
publicly available [5]. Table 1 provides statistics of the executables used in our
study.

4.2 API Call Tracer

We have used API Monitor 1.5 to log the API call sequences of Windows
processes. It captures these API calls and stores them in apm file format [1].
It has an API and a process filter. The API filter gives us the option of filtering
unnecessary API calls by category. In the API filter, we can select the calls of
following categories: (1) Dynamic-Link Libraries, (2) Memory Management, (3)
Network Management, (4) Processes and Threads, (5) Registry, and (6) Socket.
The process filter allows us to filter API calls made by different processes. We
have captured API calls of all system-wide processes because some malware in
our study use Windows processes like explorer.exe to carry out malicious ac-
tivities. Therefore, it is not possible for us to exactly pin-point a set of processes
for monitoring.

We install API call tracer on a fresh virtual machine of Microsoft Windows
XP and also create its backup. After execution of each malware or benign ex-
ecutable, we replace the virtual machine source with the original backup. We
capture API calls from the start of execution of a process till it finishes.

A Sense of ‘Danger’ for Windows Processes 7

4.3 Feature Selection and Extraction

We use n−gram analysis for feature extraction. n−gram of a sequence is the
normalized frequency histogram of n successive elements of the sequence [8].
n−grams computed with very less value of n contain insufficient information and
those with very large values of n incur unacceptably high processing overheads.
So, we have to choose a suitable value of n to get sufficient information from
the n−grams while incurring reasonable processing overheads. In this study, we
have used the value of n = 4. Each API function is mapped to a unique random
variable. We extract the most informative 4−grams from all dataset files by
ranking them according to their information gain, also known as average mutual
information. The information gain of a feature i is defined as [18]:

I(Y ; X) = H(Y)−H(Y |X),

where X is an input attribute, Y is a class attribute, H(Y) is the entropy
of the class attribute variable Y and H(Y |X) is the conditional entropy of Y
with respect to X. Therefore, information gain of an input attribute quantifies
the reduction in uncertainty of the class attribute given that we know the value
of input attribute. We have selected top 500 4−grams sequences by applying
threshold to information gain values. 500 4−grams are selected to ensure that
adequate amount of relevant information is selected for the signal calculation
process, which is explained in the next section.

For feature extraction, we check the log file of each executable file for presence
or absence of the selected n−grams. We place 1 if the n−gram is present and 0
otherwise. Each executable log is mapped to a 500−dimensional binary string.
All strings generated for benign executables are placed in a separate file and the
same is done for trojans, viruses and worms. We then combine the separate files
to create three datasets: benign-trojan, benign-virus and benign-worm. In the
next section, we explain the detection accuracy of different variations of DCA
using each of the above-mentioned datasets.

5 Experimental Analysis

5.1 Signals and Antigens

We have used boolean information about presence or absence of top 500 n−grams,
which characterize the activities of each executable.

To map information from boolean feature vectors to signals in a systematic
manner, we propose an intuitive procedure. Firstly, we count the number of times
a given feature (n−gram sequence) is present in benign and malicious logs. We
term these counts as n(b) for benign logs and n(m) for malware logs. We then
compute the kappa metric (κ) for every n−gram as:

κ = loge

(
n(b)
n(m)

)

8 Salman et al.

0 100 200 300 400 500
−40

−30

−20

−10

0

10

20

30

40

n−grams

lo
g

 [
n

(b
)

/
n

(m
)]

Trojan
Virus
Worm

(a) κ distribution plot of n-grams

0 100 200 300 400 500
−40

−20

0

20

40

n−grams

lo
g

 [
n

(b
)

/n
(m

)]

B

A

C D

E

(b) Regions of interest for
benign-worm dataset

Fig. 1. κ distribution plot of n-grams for all datasets

Figure 1(a) shows the plot of κ for every n−gram in all datasets. An interested
reader will appreciate the peculiar nature of the plot, which can be helpful in
selecting n−grams for signal calculation. Figure 1(b) shows the plot of only
benign-worm dataset where potentially interesting n−gram regions are marked
with black circles. Intuitively, n−grams with positive values of κ represent benign
behavior and vice-versa. We now detail the formation of all types of signals: (1)
safe, (2) PAMP, and (3) danger.

For safe signal, we are interested in n−grams which are mostly present in
the traces of benign processes (region D), and those which are never present in
benign traces (region A). For PAMP signal, we are interested in n−grams which
are mostly present in malware traces (region B), and those which are never
present in the traces of malware processes (region E). To derive the magnitude
of safe and PAMP signals, we add a predefined value to the signal value if we are:
(1) able to find n−gram that is supposed to be present, and (2) unable to find
n−gram that is supposed to be absent. Finally, we normalize the value signal in
a desired range.

To extract danger signal, we are interested in n−grams belonging to region C.
These n−grams have high probability of being present in benign traces, but not
as high as required for deriving safe signal. We use the absence of these n−grams
as the evidence of danger. Remember that large deviations from benign behavior
reflect associated danger. In order to create antigens, we label each instance of
all datasets with an integer value.

5.2 Experimental Setup

We now describe the experimental setup used in our study. We plan to examine
the effect of antigen multiplier and moving time-windows on the performance
of cDCA and dDCA in terms of detection accuracy. We perform independent
experiments using all three datasets—benign-trojan, benign-virus, benign-worm.

A Sense of ‘Danger’ for Windows Processes 9

We have designed three sets of experiments for each algorithm. First two
experiments determine the effect of varying the amount of antigen multiplier
value and sizes of moving time-windows independently on the detection accuracy.
The objective of first two experiments is to determine the best antigen multiplier
value and the best size of time-windows. In the third experiment, we analyze the
combined effect of both techniques on the detection accuracy of both algorithms.

– E.0: Effect of antigen multiplier value on the detection accuracy of cDCA
and dDCA.

– E.1: Effect of size of moving time-windows on the detection accuracy of
cDCA and dDCA.

– E.2: Combined effect of antigen multiplier value and size of moving time-
windows on the detection accuracy of cDCA and dDCA.

In our experimentation, the number of DCs are kept constant at 100 for both
algorithms. All datasets are ordered, i.e., benign class followed by malicious class.
The experiments are conducted on a 2.2 GHz Dell Vostro 1510 Core 2 Duo.

Parameters of cDCA. The thresholds values used in this study are derived
from distributions of the datasets. We divide the number of anomalous instances
with the total number of instances in a dataset to compute threshold. As a result,
we have determined threshold values of 0.547, 0.630 and 0.580 for benign-trojan,
benign-virus and benign-worm datasets respectively.

Danger and PAMP signals are normalized within a range of 0 to 100 while
safe signal is normalized within a range of 0 to 66. The migration threshold is
kept between 300 to 500. The use of high values ensures that the classification
of current instance is affected by its neighboring instances. Each experiment is
repeated 10 times and the averages, along with standard deviations, of these
runs are plotted in Figures 2, 3 and 4.

Parameters of dDCA. For dDCA, we use same values of PAMP and safe sig-
nals as that of cDCA. Lifespans are uniformly distributed between a range of 300
to 500 across the DC population. The increments are computed by dividing the
range of lifespan with the number of used DCs. As before, the higher values in-
clude the effect of neighboring instances on the classification of current instance,
which tends to reduce the error because of noise during signal calculation.

5.3 Discussions on Results

E.0: Effect of antigen multiplier on cDCA and dDCA. Remember that
by using multiplier, each antigen is copied several times into the tissue antigen
vector. More than one presentations of the same antigen allows multiple DCs
to evaluate its context. Intuitively speaking, the collective assessment by DC
population should provide more accurate prediction since final context is less
vulnerable to the wrong judgment of a single DC.

10 Salman et al.

1 5 10 50 100
0.75

0.8

0.85

0.9

0.95

1

Antigen Multiplier Value

D
e

te
ct

io
n

 A
cc

u
ra

cy

Trojan
Virus
Worm

(a) Accuracy plot for basic DCA

1 5 10 50 100
0.95

0.96

0.97

0.98

0.99

1

Antigen Multiplier Value

D
e

te
ct

io
n

 A
cc

u
ra

cy

Trojan
Virus
Worm

(b) Accuracy plot for dDCA

Fig. 2. Accuracy results for varying Antigem Multiplier

The need for antigen multiplier is justified where insufficient antigens are
available for doing classification. This is a common situation in data mining
applications. For example, KDD 99 dataset used by Gu et al. in [16] and breast
cancer dataset used by Greensmith et al. in [12] have only one copy of each
antigen. Therefore, antigen multiplier can play an important role in improving
the classification accuracy in such applications. We have used antigen multiplier
values of 1, 5, 10, 50 and 100. Note that the multiplication factor of 1 refers to
the case when antigen multiplication is not applied.

The results of cDCA are shown in Figure 2(a). DCA achieves poor classifica-
tion accuracy when antigen multiplication is 1 because there is just one antigen
of each type which may get picked by a DC having either a very high or a very
low migration threshold. In the former case, it may get associated with the in-
stances of a wrong class, and in the later case the neighboring instances would
hardly have any effect because the DC would migrate to a lymph node in a sin-
gle iteration. As expected, the detection accuracy of the algorithm significantly
increases with an increase in the antigen multiplication factor.

The results of varying antigen multiplier in dDCA are shown in Figure 2(b).
The classification accuracy trend is similar to the one observed in cDCA. How-
ever, the classification accuracy of dDCA, even without antigen multiplication,
is significantly better compared with the cDCA. This improvement can be at-
tributed to the use of Tk, which caters for different ranges of normalization of
signals and their effect on the migration threshold. As a result, the algorithm
becomes more adaptive to variations of parameters. Finally, we observe that
the antigen multiplication factor of 100 for dDCA achieves better classification
accuracy than all antigen multiplier configurations of cDCA.

E.1: Effect of Moving Time-Windows on cDCA and dDCA. When
we use the concept of moving time-windows, we actually take average of the
magnitude of signals present in that window. This effectively reduces the signal’s
noise by including the effect of neighboring signals. The signals are also averaged

A Sense of ‘Danger’ for Windows Processes 11

1 2 5 7 10
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Time Windows Size

D
e

te
ct

io
n

 A
cc

u
ra

cy

Trojan
VIrus
Worm

(a) Accuracy plot for basic DCA

1 2 5 7 10
0.9

0.92

0.94

0.96

0.98

1

Time Windows Size

D
e

te
ct

io
n

 A
cc

u
ra

cy

Trojan
Virus
Worm

(b) Accuracy plot for dDCA

Fig. 3. Accuracy results for varying size of time-windows

near class boundaries. This helps in reducing the possibility of false predictions.
We have used time-windows of sizes 1, 2, 5, 7 and 10 in our study.

The results of moving time-windows for cDCA are plotted in Figure 3(a). The
poor accuracy of cDCA at a time-window of size 1 stems in the same reasons
already explained for antigen multiplication factor of 1. However, it is interesting
to note that increasing the size of time-windows has almost negligible effect on
accuracy of the algorithm. This behavior is due to the fact that noise in the
obtained signals is already fairly low, which leaves little room for removing the
noise or making other relevant improvements.

The results of moving time-windows for dDCA are shown in Figure 3(b). It
is interesting to observe that the accuracy drops with an increase in the size of
time-window. We contemplate on a possible explanation that unrelated signals
and antigens get associated with each other for larger time-windows. This effect
is more evident at the boundary of two classes. If we take the example of the last
entry of a benign class, most of the signals in the time-window would belong to
the malware class. Now if we take average, the signal value is biased towards the
malware class. dDCA still achieves better classification accuracy for all respective
time-windows sizes than cDCA.

E.2: Combined effect of both antigen multiplier and moving time-
windows on cDCA and dDCA. From the results of previous two experi-
ments, it can be deduced that antigen multiplier values of 50 and 100 provide
the best classification accuracy results for cDCA and dDCA respectively. In case
of time-windows, the window size of 2 has yielded best average accuracy results
for both algorithms.

Figures 4(a) and 4(c) respectively show the results of varying antigen multi-
plier while keeping the window size fixed at 2 and varying the window size while
keeping the multiplier value fixed at 50 for cDCA. Similarly, Figures 4(b) and
4(d) show the results of varying antigen multiplier while keeping the window
size fixed at 2 and varying the window size while keeping the multiplier value at

12 Salman et al.

1 5 10 50 100
0.8

0.85

0.9

0.95

1

Antigen Multiplier Value

D
e

te
ct

io
n

 A
cc

u
ra

cy

Trojan
Virus
Worm

(a) Accuracy plot for varying
Antigen Multiplier with Time-
Windows fixed at 2 for basic
DCA

1 2 5 7 10
0.95

0.96

0.97

0.98

0.99

1

Time Windows Size

D
e

te
ct

io
n

 A
cc

u
ra

cy

Trojan
Virus
Worm

(b) Accuracy plot for vary-
ing Time-Windows with Antigen
Multiplier fixed at 50 for basic
DCA

1 5 10 50 100
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Antigen Multiplier Value

D
e

te
ct

io
n

 A
cc

u
ra

cy

Trojan
Virus
Worm

(c) Accuracy plot for varying
Antigen Multiplier with Time-
Windows fixed at 2 for dDCA

1 2 5 7 10
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Time Windows Size

D
e

te
ct

io
n

 A
cc

u
ra

cy

Trojan
Virus
Worm

(d) Accuracy plot for vary-
ing Time-Windows with Antigen
Multiplier fixed at 100 for dDCA

Fig. 4. Accuracy results for cascading antigen multiplier and time-windows

100 respectively for dDCA. It is evident that the detection accuracies are better
compared with the results of E.0 and E.1 experiments of cDCA.

The results of dDCA in Figure 4(c) show an increase in the classification
accuracy reflecting an increase in antigen multiplier value. Likewise, Figure 4(d)
shows decrease in the classification accuracy, similar to the trends shown in
Figure 3(b), due to the increase in the size of time-windows. The results of
dDCA, in Figure 4(c) with antigen multiplier value set to 100 and in Figure
4(d) with the value of time-windows set to 1 and 2, show better classification
accuracy than all other settings for dDCA.

From our results, we can conclude that the use of antigen multiplication is
highly recommended. While, the effect of time-windows on results of cDCA is
minimal and the accuracy drops as the size of time-window increases for dDCA.

A Sense of ‘Danger’ for Windows Processes 13

6 Limitations and Potential Solutions

In this section, we briefly present the limitations of DCA which we have ob-
served for the presented problem. We also discuss potential solutions of these
limitations.

A basic problem with DCA is that it requires adjustment of several para-
meters and there are no rules of thumb to determine their optimal values. This
limitation introduces additional design dimensions which are to be explored for
obtaining the best results. For example, there is no standard procedure to deter-
mine the weights used in DCA. Intuitively, the optimal values of these weights
vary with respect to different properties of the dataset.

DCA also lacks an automated module for signal computation from high-
dimensional data. Signal computation strategies vary significantly from one ap-
plication to another. In this paper, we have introduced a systematic and intuitive
method to group and transform high-dimensional input data for typical 2−class
problems.

DCA decisions are based on the aggregate sampling of each antigen. This
demands multiple presentations of every antigen. Hence, DCA does not work
well in situations where insufficient number of antigens are available (such as
data-mining). Our study has shown that antigen multiplication is an important
concept which can be used to overcome this limitation.

DCA performs a temporal correlation between antigens and the signals for
classification. It distinguishes between normal and potentially malicious antigens
on the basis of neighboring antigens. This feature can be exploited by crafty at-
tackers (via mimicry attacks) to evade detection by DCA. The malicious entities
may remain undetected by wilfully mimicking benign behavior intermittently.
This vulnerability is also observable at the class boundaries.

7 Conclusions

In this study, we have analyzed the feasibility of using two variations of DCA—
cDCA and dDCA—for run-time detection of malware. We have also investigated
the effect of antigen multiplier and moving time-windows on the accuracy of
both algorithms. The results of our experiments highlight the promise of DCA
in malware detection applications and relevant 2−class problems.

The important conclusions of our experiments are: (1) danger theory based
DCA has the potential in the domain of run-time malware detection, (2) dDCA
consistently outperforms DCA in terms of classification accuracy, and (3) antigen
multiplier shows promise to improve the detection accuracy while time-windows
show little relevance in improving the detection accuracy.

References

1. API Monitor, available at http://www.rohitab.com/apimonitor.

14 Salman et al.

2. F-Secure Corporation, “F-Secure Reports Amount of Malware Grew by 100% during
2007”, Press release, 2007.

3. Symantec, “Internet Security Threat Report”, Vol. XIV, 2009.
4. The Danger Project, http://www.dangertheory.com.
5. VX Heavens Virus Collection, VX Heavens website, http://vx.netlux.org.
6. U. Aickelin, P. Bentley, S. Cayzer, J. Kim, J. McLeod, “Danger Theory: The Link

between AIS and IDS?”, International Conference on Artificial Immune Systems
(ICARIS), pp. 147-155, UK, 2003.

7. M. Christodorescu, S. Jha, “Testing Malware Detectors”, ACM SIGSOFT Software
Engineering Notes, 29(4), pp. 34-44, ACM Press, 2004.

8. M. Damashek, “Gauging Similarity with n-Grams: Language-Independent Catego-
rization of Text”, Vol. 267, pp. 843-848, Science, 1995.

9. S. Forrest, S.A. Hofmeyr, A. Somayaji, T.A. Longstaff, “A sense of self for Unix
processes”, IEEE Symposium on Security and Privacy, pp. 120-128, USA, IEEE
Press, 1996.

10. F. Gonzalez, D. Dasgupta, “Anomaly Detection Using Real-Valued Negative Selec-
tion”, Journal of Genetic Programming and Evolvable Machines, 4(4), pp. 383-403,
2003.

11. F. Gonzalez, D. Dasgupta, L.F. Nino, “A Randomized Real-Valued Negative Selec-
tion Algorithm”, International Conference on Artificial Immune Systems (ICARIS),
pp. 261-272, UK, 2003.

12. J. Greensmith, U. Aickelin, S. Cayzer, “Introducing Dendritic Cells as a Novel
Immune-Inspired Algorithm for Anomaly Detection”, International Conference on
Artificial Immune Systems (ICARIS), pp. 153-167, Springer, Canada, 2005.

13. J. Greensmith, U. Aickelin, J. Twycross, “Articulation and clarification of the
dendritic cell algorithm”, International Conference on Artificial Immune Systems
(ICARIS), pp. 404-417, Springer, Portugal, 2006.

14. J. Greensmith, U. Aickelin, “Dendritic Cells for SYN Scan Detection”, Genetic
and Evolutionary Computation Conference (GECCO), pp. 49-56, ACM Press, UK,
2007.

15. J. Greensmith, U. Aickelin, “The Deterministic Dendritic Cell Algorithm”, Inter-
national Conference on Artificial Immune Systems (ICARIS), pp. 291-303, Springer,
Thailand, 2008.

16. F. Gu, J. Greensmith, U. Aickelin, “Further Exploration of the Dendritic Cell
Algorithm: Antigen Multiplier and Time Windows”, International Conference on
Artificial Immune Systems (ICARIS), pp. 142-153, Springer, Thailand, 2008.

17. Z. Ji, D. Dasgupta, “Real-Valued Negative Selection Using Variable-Sized Detec-
tors”, Genetic and Evolutionary Computation Conference (GECCO), pp. 287-298,
Springer, USA, 2004.

18. J.Z. Kolter, M.A. Maloof, “Learning to detect malicious executables in the wild”,
International Conference on Knowledge Discovery and Data Mining, pp. 470-478,
ACM Press, USA, 2004.

19. P. Matzinger, “Tolerance, danger and the extended family”, Annual Review of
lmmunology, Vol. 12, pp. 991-1045, 1994.

20. T. Stibor, J. Timmis, C. Eckert, “On the Appropriateness of Negative Selection
defined over Hamming Shape Space As a Network Intrustion Detection System”,
IEEE Congress on Evolutionary Computation (CEC), pp. 995-1002, IEEE Press,
UK, 2005.

21. T. Stibor, P. Mohr, J. Timmis, C. Eckert, “Is Negative Selection Appropri-
ate for Anomaly Detection?”, Genetic and Evolutionary Computation Conference
(GECCO), pp. 321-328, USA, ACM Press, 2005.

