Today:
 o Solving recurrence relations.
 o Pigeonhole arguments

Announcements:
 o Quiz 3 on Tuesday

Karatsuba algorithm (1960/1962) Suppose we want to multiply two decimal numbers. We write one number as \(x = x_1 \| x_0 \) and the other was \(y = y_1 \| y_0 \), each half having \(m \) digits (let’s not worry about what to do if \(m \) is odd; no real complications are added). So

\[
x = x_1 \cdot 10^m + x_0 \quad \text{and} \quad y = y_1 \cdot 10^m + y_0,
\]

The product is then
\[
xy = (x_1 \cdot 10^m + x_0)(y_1 \cdot 10^m + y_0) = z_2 \cdot 10^{2m} + z_1 \cdot 10^m + z_0,
\]

where
\[
z_2 = x_1 y_1 \quad \text{and} \quad z_1 = x_1 y_0 + x_0 y_1 \quad \text{and} \quad z_0 = x_0 y_0.
\]

These formulas require **four multiplications**. Karatsuba observed that \(xy \) can be computed in only **three multiplications** of \(m \)-digit values. With \(z_0 \) and \(z_2 \) as before we can calculate
\[
z_1 = (x_1 + x_0)(y_1 + y_0) - z_2 - z_0
\]
which holds since
\[
z_1 = (x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0 = x_1 y_0 + x_0 y_1.
\]

Example Let’s compute

\[
98 \quad 76
\times \quad 56 \quad 78
\
\hline
5928
7644
\
4256 \quad \text{these two sum to 11900. But we can also get 11900 as}
5488 \quad 11900 = (98+76)(56+78) - 5928 - 5488
\
\hline
56075928 = 174 \times 134 - 5928 - 5488
\]

Comparing the asymptotic running times
First, the 4-multiply method:

\[T(n) = 4T(n/2) + n \quad \text{(when } n > 1; \ T(n) = \text{const when } n = 1) \]

\[= 4^2 T(n/4) + 2n + n \]
\[= 4^3 T(n/8) + n(1 + 2 + 4) \]
\[= 4^4 T(n/16) + n(1 + 2 + 2^2 + 2^3) \]
\[= \ldots \]
\[= 4^k + n(2^k - 1) \]
\[\in \Theta(n) + O(n^2) \in \Theta(n^2) \]

Now, the 3-multiply method:

\[T(n) = 3T(n/2) + n \]
\[= 3^2 T(n/4) + (3n/2 + n) \]
\[= 3^3 T(n/8) + 3n/2 + n \]
\[= 3^4 T(n/16) + n(1 + (3/2) + (3/2)^2 + (3/2)^3) \]
\[= \ldots \]
\[= 3^k T(n/2^k) + n(1 + (3/2) + (3/2)^2 + (3/2)^3 + \ldots + (3/2)^{k-1}) \]

At this point it would be good to know what is

\[S = 1 + x + x^2 + \ldots + x^{k-1} + x^k \]
\[Sx = x + x^2 + \ldots + x^k + x^{k+1} \]
\[1+Sx = 1 + x + x^2 + \ldots + x^n + x^{k+1} \]
\[1+Sx = S + x^{k+1} \]
\[S(x-1) = x^{k+1} - 1 \]
\[S = (x^{k+1} - 1) / (x-1) \]

It is worth remembering this result (or, better, being able to re-derive it if you need it).

\[1 + x + x^2 + \ldots + x^{k-1} = (x^k - 1) / (x-1) \]

So, with \(x = 3/2 \), we have

\[(1 + (3/2) + (3/2)^2 + (3/2)^3 + \ldots + (3/2)^{k-1}) = 2 \ (3/2)^k - 2 \]

\[= 3^k T(n/2^k) + n(1 + (3/2) + (3/2)^2 + (3/2)^3 + \ldots + (3/2)^{k-1}) \]
\[= 3^k T(n/2^k) + n \ ((3/2)^k - 1) / (1/2) \]

Now we want \(k = \lg n \), so

\[= 3^\lg n \ + 2n (3/2)^\lg n \]
\[= (2^\lg 3)^\lg n + 2n \ 3^\lg n / 2^\lg n \]
\[= n^\lg 3 + 2 \ n^\lg 3 \]
\[= \Theta(n^\lg 3) \]
\[= \Theta(n^{1.5849}) \]

Best-known: we can actually multiply two n-digit numbers in time \(\Theta(n \log n \log \log n) \) or this number of 2-input gates) using the Schönhage–Strassen algorithm (1971) – the third multiplicand not improved by Fürer's (2007)
<table>
<thead>
<tr>
<th>Notation</th>
<th>Intuition</th>
<th>Informal definition: for sufficiently large n...</th>
<th>Formal Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(n) \in O(g(n))$</td>
<td>f is bounded above by g (up to constant factor)</td>
<td>$</td>
<td>f(n)</td>
</tr>
<tr>
<td>$f(n) \in \Omega(g(n))$</td>
<td>f is bounded below by g</td>
<td>$f(n) \geq g(n) \cdot k$ for some positive k</td>
<td>$\exists k > 0 \ \exists n_0 \ \forall n > n_0 \ g(n) \cdot k \leq f(n)$</td>
</tr>
<tr>
<td>$f(n) \in \Theta(g(n))$</td>
<td>f is bounded above and below by g</td>
<td>$g(n) \cdot k_1 \leq f(n) \leq g(n) \cdot k_2$ for some positive k_1, k_2</td>
<td>$\exists k_1 > 0 \ \exists k_2 > 0 \ \exists n_0 \ \forall n > n_0 \ g(n) \cdot k_1 \leq f(n) \leq g(n) \cdot k_2$</td>
</tr>
<tr>
<td>$f(n) \in o(g(n))$</td>
<td>f is dominated by g</td>
<td>$</td>
<td>f(n)</td>
</tr>
<tr>
<td>$f(n) \in \omega(g(n))$</td>
<td>f dominates g</td>
<td>$</td>
<td>f(n)</td>
</tr>
<tr>
<td>$f(n) \sim g(n)$</td>
<td>f is equal to g asymptotically</td>
<td>$f(n)/g(n) \rightarrow 1$</td>
<td>$\forall \varepsilon > 0 \ \exists n_0 \ \forall n > n_0 \ \frac{</td>
</tr>
</tbody>
</table>

If an additional example feels needed: do **mergesort**
The asymptotic "debate"

Asymptotic notation is everywhere in computer science, but not everyone is a fan.

Reasons for asymptotic notation:
1. **Simplicity** – makes arithmetic simple, makes analyses easier
2. Applied to running times: Works well, in practice, to get an understanding of efficiency
3. When applied to running times: Facilitates greater model-independence

Reasons against:
1. Hidden constants can matter
2. Excessive reliance on asymptotics: may fail to notice about things that one really should care about
3. Not everything has an “n” value to grow with respect to – or, may really be interested in one particular n.

There is more than O and Θ. (Table modified from Wikipedia)

Back to the Pigeonhole Principle

If N pigeons roost in n holes, $N>n$, then some two pigeons share a hole.

Restated: [Pigeonhole principle]
If $f: A \rightarrow B$ where A and B are finite sets, $|A|>|B|$, then f is NOT injective.

Or
[Pigeonhole principle, strong form]
If $f: A \rightarrow B$ where A and B are finite sets, then so point $b \in B$ must have at least \(\left\lceil \frac{|B|}{|A|} \right\rceil \) preimages.

Eg, if 100 pigeons roost in 30 holes, some hole has at least 4 pigeons roosting therein.

Ex 0. Any room with 3 or more people has some two of the same gender.

Ex 1. 20 people at a party, some two have the same number of friends.
number of friends
proof: 0.18 or 1.19

Ex 2: Given five points inside the square whose side is of length 2, prove that two are within \(\sqrt{2} \) of each other.

Soln: divide square into four 1 x 1 cells. Diameter of each cell = \(\sqrt{2} \)

Ex 3: In any list of 10 numbers, a_1, \ldots, a_{10}, there's a subsequence of (consecutive) numbers whose sum is divisible by 10.

Consider
\[
\begin{align*}
 s_1 &= a_1 \\
 s_2 &= a_1 + a_2 \\
 \cdots \\
 s_{10} &= a_1 + a_2 + \ldots + a_{10}
\end{align*}
\]
Then numbers in the list. If any of these divisible by 10: done.

Otherwise, each is congruent to 1, \ldots, 9 mod 10. So two of the \(s_i \) (mod 10) values are congruent to the same thing. Eg, may

\[
\begin{align*}
 a_1 + a_2 + a_3 &= 6 \text{ (mod 5)} \\
 a_1 + a_2 + a_3 + a_4 + a_5 &= 6 \text{ (mod 5)}
\end{align*}
\]

But then

\[
a_4 + a_5 = 0 \text{ (mod 10)}
\]

Ex 4. (beautiful example) In any room of 6 people, there are 3 mutual friends or 3 mutual strangers (Ramsey theorem, and \(R(3,3)=6 \))

Remove person 1 5 people left.
Put into two pots: friends with 1, non-friends with 1.
One has at least three people.
If three friends:
 Case 1: some two know each other: DONE
 Case 2: no two know each other: DONE
If three non-friends: ...

Difficult Puzzle: What is the minimum number of people that must assemble in a room such that there will be at least \(n \) friends or \(n \) non-friends: \(R(n,n) \)

\[
\begin{align*}
 R(4,4) &= 18 \text{ (1955)} \\
 R(5,5) &= \text{?? open!!! known to be between 43 (1989) and 49 (1995)} \\
 R(10,10) &= \text{?? open and not tightly determined at all: range 798 (1986) - 23,556 (2002)}
\end{align*}
\]